Page 89 - 《爆炸与冲击》2025年第9期
P. 89

第 45 卷             肖    敏,等: 含空穴炸药硝基甲烷冲击转爆轰过程的数值模拟                              第 9 期

               [17]   SHYUE  K  M.  A  fluid-mixture  type  algorithm  for  compressible  multicomponent  flow  with  Mie-Grüneisen  equation  of
                    state [J]. Journal of Computational Physics, 2001, 171(2): 678–707. DOI: 10.1006/jcph.2001.6801.
               [18]   ZHANG F, CHENG J. A bound-preserving and positivity-preserving high-order arbitrary Lagrangian-Eulerian discontinuous
                    Galerkin method for compressible multi-medium flows [J]. SIAM Journal on Scientific Computing, 2024, 46(3): B254–B279.
                    DOI: 10.1137/23M1588810.
               [19]   HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries [J]. Journal of Computational
                    Physics, 1981, 39(1): 201–225. DOI: 10.1016/0021-9991(81)90145-5.
               [20]   MULBAH C, KANG C, MAO N, et al. A review of VOF methods for simulating bubble dynamics [J]. Progress in Nuclear
                    Energy, 2022, 154: 104478. DOI: 10.1016/j.pnucene.2022.104478.
               [21]   TRYGGVASON G, BUNNER B, ESMAEELI A, et al. A front-tracking method for the computations of multiphase flow [J].
                    Journal of Computational Physics, 2001, 169(2): 708–759. DOI: 10.1006/jcph.2001.6726.
               [22]   GIBOU F, FEDKIW R, OSHER S. A review of level-set methods and some recent applications [J]. Journal of Computational
                    Physics, 2018, 353: 82–109. DOI: 10.1016/j.jcp.2017.10.006.
               [23]   姚成宝, 王宏亮, 浦锡锋, 等. 空中强爆炸冲击波地面反射规律数值模拟研究 [J]. 爆炸与冲击, 2019, 39(11): 112201. DOI:
                    10.11883/bzycj-2018-0287.
                    YAO C B, WANG H L, PU X F, et al. Numerical simulation of intense blast wave reflected on rigid ground [J]. Explosion and
                    Shock Waves, 2019, 39(11): 112201. DOI: 10.11883/bzycj-2018-0287.
               [24]   刘铁钢, 许亮. 模拟多介质界面问题的虚拟流体方法综述 [J]. 气体物理, 2019, 4(2): 1–16. DOI: 10.19527/j.cnki.2096-
                    1642.0746.
                    LIU T G, XU L. A review of ghost fluid methods for multi-medium interface simulation [J]. Physics of Gases, 2019, 4(2):
                    1–16. DOI: 10.19527/j.cnki.2096-1642.0746.
               [25]   LIU  T  G,  KHOO  B  C,  YEO  K  S.  Ghost  fluid  method  for  strong  shock  impacting  on  material  interface  [J].  Journal  of
                    Computational Physics, 2003, 190(2): 651–681. DOI: 10.1016/S0021-9991(03)00301-2.
               [26]   WANG C W, LIU T G, KHOO B C. A real ghost fluid method for the simulation of multimedium compressible flow [J].
                    SIAM Journal on Scientific Computing, 2006, 28(1): 278–302. DOI: 10.1137/030601363.
               [27]   XU  L,  FENG  C  L,  LIU  T  G.  Practical  techniques  in  ghost  fluid  method  for  compressible  multi-medium  flows  [J].
                    Communications in Computational Physics, 2016, 20(3): 619–659. DOI: 10.4208/cicp.190315.290316a.
               [28]   HUO  Z  X,  JIA  Z  P.  A  GRP-based  tangential  effects  preserving,  high  resolution  and  efficient  ghost  fluid  method  for  the
                    simulation  of  two-dimensional  multi-medium  compressible  flows  [J].  Computers  and  Fluids,  2024,  276:  106261.  DOI:
                    10.1016/j.compfluid.2024.106261.
               [29]   XU L, YANG W B, LIU T G. An interface treatment for two-material multi-species flows involving thermally perfect gases
                    with chemical reactions [J]. Journal of Computational Physics, 2022, 448: 110707. DOI: 10.1016/j.jcp.2021.110707.
               [30]   ZHAO Z T, RONG J L, ZHANG S X. A numerical study of underwater explosions based on the ghost fluid method [J]. Ocean
                    Engineering, 2022, 247: 109796. DOI: 10.1016/j.oceaneng.2021.109796.
               [31]   OSHER  S,  SETHIAN  J  A.  Fronts  propagating  with  curvature-dependent  speed:  algorithms  based  on  Hamilton-Jacobi
                    formulations [J]. Journal of Computational Physics, 1988, 79(1): 12–49. DOI: 10.1016/0021-9991(88)90002-2.
               [32]   FEDKIW R P, ASLAM T, MERRIMAN B, et al. A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the
                    ghost fluid method) [J]. Journal of Computational Physics, 1999, 152(2): 457–492. DOI: 10.1006/jcph.1999.6236.
               [33]   TORO E F. Riemann solvers and numerical methods for fluid dynamics: a practical introduction [M]. 3rd ed. Heidelberg:
                    Springer Science & Business Media, 2009.
               [34]   JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes [J]. Journal of Computational Physics, 1996,
                    126(1): 202–228. DOI: 10.1006/jcph.1996.0130.
               [35]   WANG C, LIU X Q. High resolution numerical simulation of detonation diffraction of condensed explosives [J]. International
                    Journal of Computational Methods, 2015, 12(2): 1550005. DOI: 10.1142/S021987621550005X.
               [36]   TURLEY W D, LA LONE B M, MANCE J G, et al. Experimental observations of shock-wave-induced bubble collapse and
                    hot-spot formation in nitromethane liquid explosive [J]. Journal of Applied Physics, 2021, 129(14): 145102. DOI: 10.1063/
                    5.0039414.
                                                                                          (责任编辑    张凌云)



                                                         092301-15
   84   85   86   87   88   89   90   91   92   93   94