Page 89 - 《爆炸与冲击》2025年第9期
P. 89
第 45 卷 肖 敏,等: 含空穴炸药硝基甲烷冲击转爆轰过程的数值模拟 第 9 期
[17] SHYUE K M. A fluid-mixture type algorithm for compressible multicomponent flow with Mie-Grüneisen equation of
state [J]. Journal of Computational Physics, 2001, 171(2): 678–707. DOI: 10.1006/jcph.2001.6801.
[18] ZHANG F, CHENG J. A bound-preserving and positivity-preserving high-order arbitrary Lagrangian-Eulerian discontinuous
Galerkin method for compressible multi-medium flows [J]. SIAM Journal on Scientific Computing, 2024, 46(3): B254–B279.
DOI: 10.1137/23M1588810.
[19] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries [J]. Journal of Computational
Physics, 1981, 39(1): 201–225. DOI: 10.1016/0021-9991(81)90145-5.
[20] MULBAH C, KANG C, MAO N, et al. A review of VOF methods for simulating bubble dynamics [J]. Progress in Nuclear
Energy, 2022, 154: 104478. DOI: 10.1016/j.pnucene.2022.104478.
[21] TRYGGVASON G, BUNNER B, ESMAEELI A, et al. A front-tracking method for the computations of multiphase flow [J].
Journal of Computational Physics, 2001, 169(2): 708–759. DOI: 10.1006/jcph.2001.6726.
[22] GIBOU F, FEDKIW R, OSHER S. A review of level-set methods and some recent applications [J]. Journal of Computational
Physics, 2018, 353: 82–109. DOI: 10.1016/j.jcp.2017.10.006.
[23] 姚成宝, 王宏亮, 浦锡锋, 等. 空中强爆炸冲击波地面反射规律数值模拟研究 [J]. 爆炸与冲击, 2019, 39(11): 112201. DOI:
10.11883/bzycj-2018-0287.
YAO C B, WANG H L, PU X F, et al. Numerical simulation of intense blast wave reflected on rigid ground [J]. Explosion and
Shock Waves, 2019, 39(11): 112201. DOI: 10.11883/bzycj-2018-0287.
[24] 刘铁钢, 许亮. 模拟多介质界面问题的虚拟流体方法综述 [J]. 气体物理, 2019, 4(2): 1–16. DOI: 10.19527/j.cnki.2096-
1642.0746.
LIU T G, XU L. A review of ghost fluid methods for multi-medium interface simulation [J]. Physics of Gases, 2019, 4(2):
1–16. DOI: 10.19527/j.cnki.2096-1642.0746.
[25] LIU T G, KHOO B C, YEO K S. Ghost fluid method for strong shock impacting on material interface [J]. Journal of
Computational Physics, 2003, 190(2): 651–681. DOI: 10.1016/S0021-9991(03)00301-2.
[26] WANG C W, LIU T G, KHOO B C. A real ghost fluid method for the simulation of multimedium compressible flow [J].
SIAM Journal on Scientific Computing, 2006, 28(1): 278–302. DOI: 10.1137/030601363.
[27] XU L, FENG C L, LIU T G. Practical techniques in ghost fluid method for compressible multi-medium flows [J].
Communications in Computational Physics, 2016, 20(3): 619–659. DOI: 10.4208/cicp.190315.290316a.
[28] HUO Z X, JIA Z P. A GRP-based tangential effects preserving, high resolution and efficient ghost fluid method for the
simulation of two-dimensional multi-medium compressible flows [J]. Computers and Fluids, 2024, 276: 106261. DOI:
10.1016/j.compfluid.2024.106261.
[29] XU L, YANG W B, LIU T G. An interface treatment for two-material multi-species flows involving thermally perfect gases
with chemical reactions [J]. Journal of Computational Physics, 2022, 448: 110707. DOI: 10.1016/j.jcp.2021.110707.
[30] ZHAO Z T, RONG J L, ZHANG S X. A numerical study of underwater explosions based on the ghost fluid method [J]. Ocean
Engineering, 2022, 247: 109796. DOI: 10.1016/j.oceaneng.2021.109796.
[31] OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi
formulations [J]. Journal of Computational Physics, 1988, 79(1): 12–49. DOI: 10.1016/0021-9991(88)90002-2.
[32] FEDKIW R P, ASLAM T, MERRIMAN B, et al. A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the
ghost fluid method) [J]. Journal of Computational Physics, 1999, 152(2): 457–492. DOI: 10.1006/jcph.1999.6236.
[33] TORO E F. Riemann solvers and numerical methods for fluid dynamics: a practical introduction [M]. 3rd ed. Heidelberg:
Springer Science & Business Media, 2009.
[34] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes [J]. Journal of Computational Physics, 1996,
126(1): 202–228. DOI: 10.1006/jcph.1996.0130.
[35] WANG C, LIU X Q. High resolution numerical simulation of detonation diffraction of condensed explosives [J]. International
Journal of Computational Methods, 2015, 12(2): 1550005. DOI: 10.1142/S021987621550005X.
[36] TURLEY W D, LA LONE B M, MANCE J G, et al. Experimental observations of shock-wave-induced bubble collapse and
hot-spot formation in nitromethane liquid explosive [J]. Journal of Applied Physics, 2021, 129(14): 145102. DOI: 10.1063/
5.0039414.
(责任编辑 张凌云)
092301-15