Page 88 - 《爆炸与冲击》2025年第9期
P. 88
第 45 卷 肖 敏,等: 含空穴炸药硝基甲烷冲击转爆轰过程的数值模拟 第 9 期
5 结 论
提出了一种处理炸药与爆轰产物的混合物以及空穴间界面问题的虚拟流体方法,并且采用基于水
平集技术的多介质界面追踪方法对炸药内空穴压缩、塌陷等介观尺度下的动力学过程开展了数值模
拟。模拟结果表明:在冲击波载荷下,含空穴液体炸药硝基甲烷比纯净炸药的化学反应速率显著提高。
在 4 GPa 的冲击压力加载下,由于空穴塌陷形成新冲击波的强度不足以引发爆轰,生成的爆轰产物非常
少。当冲击压力升至 6 GPa 时,空穴塌缩、闭合处炸药的化学反应速率大幅提高,成功实现爆轰,反应区
内不断产生爆轰产物。含空穴硝基甲烷在 8 GPa 的冲击压力加载下能更快实现爆轰。
参考文献:
[1] 彭亚晶, 叶玉清. 含能材料起爆过程“热点”理论研究进展 [J]. 化学通报, 2015, 78(8): 693–701. DOI: 10.14159/j.cnki.
0441-3776.2015.08.004.
PENG Y J, YE Y Q. Research progress of ‘hot-spot’ theory in energetic materials initiation [J]. Chemistry, 2015, 78(8):
693–701. DOI: 10.14159/j.cnki.0441-3776.2015.08.004.
[2] MADER C L. Numerical modeling of detonations [M]. Berkeley, USA: University of California Press, 1979.
[3] LAUER E, HU X Y, HICKEL S, et al. Numerical investigation of collapsing cavity arrays [J]. Physics of Fluids, 2012, 24(5):
052104. DOI: 10.1063/1.4719142.
[4] OZLEM M, SCHWENDEMAN D W, KAPILA A K, et al. A numerical study of shock-induced cavity collapse [J]. Shock
Waves, 2012, 22(2): 89–117. DOI: 10.1007/s00193-011-0352-9.
[5] KAPILA A K, SCHWENDEMAN D W, GAMBINO J R, et al. A numerical study of the dynamics of detonation initiated by
cavity collapse [J]. Shock Waves, 2015, 25(6): 545–572. DOI: 10.1007/s00193-015-0597-9.
[6] KAPAHI A, UDAYKUMAR H S. Dynamics of void collapse in shocked energetic materials: physics of void-void
interactions [J]. Shock Waves, 2013, 23(6): 537–558. DOI: 10.1007/s00193-013-0439-6.
[7] MICHAEL L, NIKIFORAKIS N. A hybrid formulation for the numerical simulation of condensed phase explosives [J].
Journal of Computational Physics, 2016, 316: 193–217. DOI: 10.1016/j.jcp.2016.04.017.
[8] XIANG G M, WANG B. Numerical study of a planar shock interacting with a cylindrical water column embedded with an air
cavity [J]. Journal of Fluid Mechanics, 2017, 825: 825–852. DOI: 10.1017/jfm.2017.403.
[9] BETNEY M R, ANDERSON P A, DOYLE H, et al. Numerical and experimental study of shock-driven cavity collapse [C]//
9th International Symposium on Cavitation (CAV2015). Lausanne: IOP Publishing, 2015: 012011. DOI: 10.1088/1742-6596/
656/1/012011.
[10] SUN J, YANG P F, MENG B Q, et al. Effects of micrometer-scale cavities on the shock-to-detonation transition in a
heterogeneous LX-17 energetic material [J]. Physics of Fluids, 2023, 35(12): 126117. DOI: 10.1063/5.0174851.
[11] 于明. 固体炸药爆轰与惰性介质相互作用的一种扩散界面模型 [J]. 爆炸与冲击, 2020, 40(10): 104202. DOI: 10.11883/
bzycj-2019-0435.
YU M. An improved diffuse interface model for the numerical simulation of interaction between solid explosive detonation
and inert media [J]. Explosion and Shock Waves, 2020, 40(10): 104202. DOI: 10.11883/bzycj-2019-0435.
[12] SCHMIDMAYER K, BRYNGELSON S H, COLONIUS T. An assessment of multicomponent flow models and interface
capturing schemes for spherical bubble dynamics [J]. Journal of Computational Physics, 2020, 402: 109080. DOI: 10.1016/J.
JCP.2019.109080.
[13] XIAO M, NI G X, WANG C, et al. Front capturing by level set method for the reactive Euler equations [J]. International
Journal for Numerical Methods in Fluids, 2021, 93(8): 2723–2743. DOI: 10.1002/fld.4995.
[14] KLOPSCH R, GARAN N, BACH E, et al. Parametric influence on rotating detonation combustion: insights from fast reactive
Euler simulations [J]. AIAA Journal, 2024, 62(1): 127–139. DOI: 10.2514/1.J063193.
[15] SHYUE K M. An efficient shock-capturing algorithm for compressible multicomponent problems [J]. Journal of
Computational Physics, 1998, 142(1): 208–242. DOI: 10.1006/jcph.1998.5930.
[16] SHYUE K M. A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state [J].
Journal of Computational Physics, 1999, 156(1): 43–88. DOI: 10.1006/jcph.1999.6349.
092301-14