Page 41 - 《爆炸与冲击》2025年第9期
P. 41

第 45 卷      郭    丁,等: 基于大型激波管氢氧爆轰驱动方式产生冲击波波形调控的数值模拟                             第 9 期

                    DOI: 10.11883/bzycj-2020-0395.
                    KANG Y, ZHANG S Z, ZHANG Y P, et al. Research on anti-shockwave performance of the protective equipment for the head
                    of a soldier based on shock tube evaluation [J]. Explosion and Shock Waves, 2021, 41(8): 085901. DOI: 10.11883/bzycj-2020-0395.
               [12]   WU  C  Q,  HAO  H.  Modeling  of  simultaneous  ground  shock  and  airblast  pressure  on  nearby  structures  from  surface
                    explosions [J]. International Journal of Impact Engineering, 2005, 31(6): 699–717. DOI: 10.1016/j.ijimpeng.2004.03.002.
               [13]   仲倩, 王伯良, 黄菊, 等. TNT  空中爆炸超压的相似律 [J]. 火炸药学报, 2010, 33(4): 32–35. DOI: 10.3969/j.issn.1007-
                    7812.2010.04.008.
                    ZHONG Q, WANG B L, HUANG J, et al. Study on the similarity law of TNT explosion overpressure in air [J]. Chinese
                    Journal of Explosives and Propellants, 2010, 33(4): 32–35. DOI: 10.3969/j.issn.1007-7812.2010.04.008.
               [14]   张军, 黄含军, 王军评, 等. 炸药驱动式爆炸管的载荷计算 [J]. 装备环境工程, 2021, 18(5): 21–27. DOI: 10.7643/issn.1672-
                    9242.2021.05.004.
                    ZHANG  J,  HUANG  H  J,  WANG  J  P,  et  al.  Simulation  on  the  blast  load  inside  the  explosively  drived  shock  tube  [J].
                    Equipment Environmental Engineering, 2021, 18(5): 21–27. DOI: 10.7643/issn.1672-9242.2021.05.004.
               [15]   白旭. 激波管波形控制技术研究 [J]. 仪表技术, 2023(1): 69–74. DOI: 10.19432/j.cnki.issn1006-2394.2023.01.012.
                    BAI  X.  Research  on  shock  tube  waveform  control  technology  [J].  Instrumentation  Technology,  2023(1):  69–74.  DOI:
                    10.19432/j.cnki.issn1006-2394.2023.01.012.
               [16]   杨军, 薛斌. 激波管管长对阶跃压力波形的影响分析 [J]. 振动与冲击, 2019, 38(3): 252–257. DOI: 10.13465/j.cnki.jvs.2019.
                    03.035.
                    YANG J, XUE B. Effects of shock tube length on step pressure waveform [J]. Journal of Vibration and Shock, 2019, 38(3):
                    252–257. DOI: 10.13465/j.cnki.jvs.2019.03.035.
               [17]   杨基明, 李祝飞, 朱雨建, 等. 激波的传播与干扰 [J]. 力学进展, 2016, 46(1): 201613. DOI: 10.6052/1000-0992-16-009.
                    YANG J M, LI Z F, ZHU Y J, et al. Shock wave propagation and interactions [J]. Advances in Mechanics, 2016, 46(1):
                    201613. DOI: 10.6052/1000-0992-16-009.
               [18]   任辉启, 王世合, 周松柏, 等. 大型爆炸波模拟装置研制及其应用 [C]//第十六届全国激波与激波管学术会议论文集. 洛
                    阳: 中国力学学会激波与激波管专业委员会, 2014: 10–22.
               [19]   谷笳华, 李仲发, 方治家. 用氢氧爆轰驱动气体直接模拟爆炸波 [C]//第十届全国激波与激波管学术讨论会. 黄山: 中国力
                    学学会直属激波与激波管专业组, 2002.
               [20]   俞鸿儒, 赵伟, 袁生学. 氢氧爆轰驱动激波风洞的性能 [J]. 气动实验与测量控制, 1993, 7(3): 38–42.
                    YU H R, ZHAO W, YUAN S X. Performance of shock tunnel with H 2 -O 2  detonation driver [J]. Amrodynamic Experiment
                    and Measurement & Control, 1993, 7(3): 38–42.
               [21]   俞鸿儒. 氢氧燃烧及爆轰驱动激波管 [J]. 力学学报, 1999, 31(4): 389–397. DOI: 10.3321/j.issn:0459-1879.1999.04.002.
                    YU  H  R.  Oxy-hydrogen  combustion  and  detonation  driven  shock  tube  [J].  Chinese  Journal  of  Theoretical  and  Applied
                    Mechanics, 1999, 31(4): 389–397. DOI: 10.3321/j.issn:0459-1879.1999.04.002.
               [22]   俞鸿儒, 李斌, 陈宏. 激波管氢氧爆轰驱动技术的发展进程 [J]. 力学进展, 2005, 35(3): 315–322. DOI: 10.3321/j.issn:1000-
                    0992.2005.03.002.
                    YU  H  R,  LI  B,  CHEN  H.  The  development  of  gaseous  detonation  driving  techniques  for  a  shock  tube  [J].  Advances  in
                    Mechanics, 2005, 35(3): 315–322. DOI: 10.3321/j.issn:1000-0992.2005.03.002.
               [23]   崔云霄, 王万鹏, 王雷元, 等. 压缩气体驱动大型激波管内部流场的数值模拟 [C]//中国计算力学大会                  2014  暨第三届钱令
                    希计算力学奖颁奖大会论文集. 贵阳: 中国力学学会计算力学专业委员会, 2014.
               [24]   韩文虎, 张博, 王成. 气相爆轰波起爆与传播机理研究进展 [J]. 爆炸与冲击, 2021, 41(12): 121402. DOI: 10.11883/bzycj-
                    2021-0398.
                    HAN W H, ZHANG B, WANG C. Progress in studying mechanisms of initiation and propagation for gaseous detonations [J].
                    Explosion and Shock Waves, 2021, 41(12): 121402. DOI: 10.11883/bzycj-2021-0398.
               [25]   DAVIDENKO D, GÖKALP I, DUFOUR E, et al. Numerical simulation of hydrogen supersonic combustion and validation of
                    computational  approach  [C]//12th  AIAA  International  Space  Planes  and  Hypersonic  Systems  and  Technologies.  Norfolk:
                    2013. DOI: 10.2514/6.2003-7033.
               [26]   YAMANAKA  A,  ARIGA  Y,  OBBARA  T,  et  al.  Study  on  performance  of  detonation-driven  shock  tube  [J].  JSME
                    International Journal Series B Fluids and Thermal Engineering, 2002, 45(2): 425–431. DOI: 10.1299/jsmeb.45.425.
               [27]   佐建君. 典型环境中特定炸药爆炸冲击波超压及安全防护 [D]. 北京: 北京理工大学, 2006.
                                                                                          (责任编辑    张凌云)



                                                         092102-12
   36   37   38   39   40   41   42   43   44   45   46