Page 41 - 《爆炸与冲击》2025年第9期
P. 41
第 45 卷 郭 丁,等: 基于大型激波管氢氧爆轰驱动方式产生冲击波波形调控的数值模拟 第 9 期
DOI: 10.11883/bzycj-2020-0395.
KANG Y, ZHANG S Z, ZHANG Y P, et al. Research on anti-shockwave performance of the protective equipment for the head
of a soldier based on shock tube evaluation [J]. Explosion and Shock Waves, 2021, 41(8): 085901. DOI: 10.11883/bzycj-2020-0395.
[12] WU C Q, HAO H. Modeling of simultaneous ground shock and airblast pressure on nearby structures from surface
explosions [J]. International Journal of Impact Engineering, 2005, 31(6): 699–717. DOI: 10.1016/j.ijimpeng.2004.03.002.
[13] 仲倩, 王伯良, 黄菊, 等. TNT 空中爆炸超压的相似律 [J]. 火炸药学报, 2010, 33(4): 32–35. DOI: 10.3969/j.issn.1007-
7812.2010.04.008.
ZHONG Q, WANG B L, HUANG J, et al. Study on the similarity law of TNT explosion overpressure in air [J]. Chinese
Journal of Explosives and Propellants, 2010, 33(4): 32–35. DOI: 10.3969/j.issn.1007-7812.2010.04.008.
[14] 张军, 黄含军, 王军评, 等. 炸药驱动式爆炸管的载荷计算 [J]. 装备环境工程, 2021, 18(5): 21–27. DOI: 10.7643/issn.1672-
9242.2021.05.004.
ZHANG J, HUANG H J, WANG J P, et al. Simulation on the blast load inside the explosively drived shock tube [J].
Equipment Environmental Engineering, 2021, 18(5): 21–27. DOI: 10.7643/issn.1672-9242.2021.05.004.
[15] 白旭. 激波管波形控制技术研究 [J]. 仪表技术, 2023(1): 69–74. DOI: 10.19432/j.cnki.issn1006-2394.2023.01.012.
BAI X. Research on shock tube waveform control technology [J]. Instrumentation Technology, 2023(1): 69–74. DOI:
10.19432/j.cnki.issn1006-2394.2023.01.012.
[16] 杨军, 薛斌. 激波管管长对阶跃压力波形的影响分析 [J]. 振动与冲击, 2019, 38(3): 252–257. DOI: 10.13465/j.cnki.jvs.2019.
03.035.
YANG J, XUE B. Effects of shock tube length on step pressure waveform [J]. Journal of Vibration and Shock, 2019, 38(3):
252–257. DOI: 10.13465/j.cnki.jvs.2019.03.035.
[17] 杨基明, 李祝飞, 朱雨建, 等. 激波的传播与干扰 [J]. 力学进展, 2016, 46(1): 201613. DOI: 10.6052/1000-0992-16-009.
YANG J M, LI Z F, ZHU Y J, et al. Shock wave propagation and interactions [J]. Advances in Mechanics, 2016, 46(1):
201613. DOI: 10.6052/1000-0992-16-009.
[18] 任辉启, 王世合, 周松柏, 等. 大型爆炸波模拟装置研制及其应用 [C]//第十六届全国激波与激波管学术会议论文集. 洛
阳: 中国力学学会激波与激波管专业委员会, 2014: 10–22.
[19] 谷笳华, 李仲发, 方治家. 用氢氧爆轰驱动气体直接模拟爆炸波 [C]//第十届全国激波与激波管学术讨论会. 黄山: 中国力
学学会直属激波与激波管专业组, 2002.
[20] 俞鸿儒, 赵伟, 袁生学. 氢氧爆轰驱动激波风洞的性能 [J]. 气动实验与测量控制, 1993, 7(3): 38–42.
YU H R, ZHAO W, YUAN S X. Performance of shock tunnel with H 2 -O 2 detonation driver [J]. Amrodynamic Experiment
and Measurement & Control, 1993, 7(3): 38–42.
[21] 俞鸿儒. 氢氧燃烧及爆轰驱动激波管 [J]. 力学学报, 1999, 31(4): 389–397. DOI: 10.3321/j.issn:0459-1879.1999.04.002.
YU H R. Oxy-hydrogen combustion and detonation driven shock tube [J]. Chinese Journal of Theoretical and Applied
Mechanics, 1999, 31(4): 389–397. DOI: 10.3321/j.issn:0459-1879.1999.04.002.
[22] 俞鸿儒, 李斌, 陈宏. 激波管氢氧爆轰驱动技术的发展进程 [J]. 力学进展, 2005, 35(3): 315–322. DOI: 10.3321/j.issn:1000-
0992.2005.03.002.
YU H R, LI B, CHEN H. The development of gaseous detonation driving techniques for a shock tube [J]. Advances in
Mechanics, 2005, 35(3): 315–322. DOI: 10.3321/j.issn:1000-0992.2005.03.002.
[23] 崔云霄, 王万鹏, 王雷元, 等. 压缩气体驱动大型激波管内部流场的数值模拟 [C]//中国计算力学大会 2014 暨第三届钱令
希计算力学奖颁奖大会论文集. 贵阳: 中国力学学会计算力学专业委员会, 2014.
[24] 韩文虎, 张博, 王成. 气相爆轰波起爆与传播机理研究进展 [J]. 爆炸与冲击, 2021, 41(12): 121402. DOI: 10.11883/bzycj-
2021-0398.
HAN W H, ZHANG B, WANG C. Progress in studying mechanisms of initiation and propagation for gaseous detonations [J].
Explosion and Shock Waves, 2021, 41(12): 121402. DOI: 10.11883/bzycj-2021-0398.
[25] DAVIDENKO D, GÖKALP I, DUFOUR E, et al. Numerical simulation of hydrogen supersonic combustion and validation of
computational approach [C]//12th AIAA International Space Planes and Hypersonic Systems and Technologies. Norfolk:
2013. DOI: 10.2514/6.2003-7033.
[26] YAMANAKA A, ARIGA Y, OBBARA T, et al. Study on performance of detonation-driven shock tube [J]. JSME
International Journal Series B Fluids and Thermal Engineering, 2002, 45(2): 425–431. DOI: 10.1299/jsmeb.45.425.
[27] 佐建君. 典型环境中特定炸药爆炸冲击波超压及安全防护 [D]. 北京: 北京理工大学, 2006.
(责任编辑 张凌云)
092102-12