Page 105 - 《爆炸与冲击》2025年第9期
P. 105
第 45 卷 崔 鹏,等: 动荷载下硅砂的破碎特性及吸能效应试验研究 第 9 期
径的砂样。
(5) 砂作为防护工程填充材料,可考虑常用砂的物质组成(如硅质砂和钙质砂)、加载应变率水平及
粒径特性进行标准化定制,工程设计中可直接选用或在结构设计中对分配层进行优化。
参考文献:
[1] 于潇, 陈力, 方秦. 珊瑚砂中应力波衰减规律的实验研究 [J]. 岩石力学与工程学报, 2018, 37(6): 1520–1529. DOI:
10.13722/j.cnki.jrme.2018.0147.
YU X, CHEN L, FANG Q. Experimental study on the attenuation of stress wave in coral sand [J]. Chinese Journal of Rock
Mechanics and Engineering, 2018, 37(6): 1520–1529. DOI: 10.13722/j.cnki.jrme.2018.0147.
[2] 杨阳, 张春会, 崔恩杰, 等. 单颗粒与单粒径钙质砂破碎特性及其关联关系研究 [J]. 岩石力学与工程学报, 2022, 41(S2):
3410–3418. DOI: 10.13722/j.cnki.jrme.2021.1148.
YANG Y, ZHANG C H, CUI E J, et al. The crushing characteristics of single particle and uniformly-graded sample of
carbonate sand and their association relationship [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S2):
3410–3418. DOI: 10.13722/j.cnki.jrme.2021.1148.
[3] 周辉, 任辉启, 吴祥云, 等. 成层式防护结构中分散层研究综述 [J]. 爆炸与冲击, 2022, 42(11): 111101. DOI: 10.11883/bzycj-
2022-0280.
ZHOU H, REN H Q, WU X Y, et al. A review of sacrificial claddings in multilayer protective structure [J]. Explosion and
Shock Waves, 2022, 42(11): 111101. DOI: 10.11883/bzycj-2022-0280.
[4] ZHAO D B, YI W J, KUNNATH S K. Numerical simulation and shear resistance of reinforced concrete beams under impact [J].
Engineering Structures, 2018, 166: 387–401. DOI: 10.1016/j.engstruct.2018.03.072.
[5] LIN Y, YAO W, JAFARI M, et al. Quantification of the dynamic compressive response of two Ottawa sands [J]. Experimental
Mechanics, 2017, 57(9): 1371–1382. DOI: 10.1007/s11340-017-0304-0.
[6] SONG B, CHEN W N, LUK V. Impact compressive response of dry sand [J]. Mechanics of Materials, 2009, 41(6): 777–785.
DOI: 10.1016/j.mechmat.2009.01.003.
[7] 吴建利, 胡卸文, 梅雪峰, 等. 落石冲击混凝土板与缓冲层组合结构的动力响应 [J]. 水文地质工程地质, 2021, 48(1):
78–87. DOI: 10.16030/j.cnki.issn.1000-3665.202004029.
WU J L, HU X W, MEI X F, et al. Dynamic response of RC slab with cushion layer composed of sandy soil to rockfall
impact [J]. Hydrogeology & Engineering Geology, 2021, 48(1): 78–87. DOI: 10.16030/j.cnki.issn.1000-3665.202004029.
[8] 吕华, 王仲琦. 密实填充砂墙对冲击波消波吸能的试验研究 [J]. 中国安全科学学报, 2016, 26(10): 64–69. DOI: 10.16265/
j.cnki.issn1003-3033.2016.10.012.
LYU H, WANG Z Q. Experimental study of shock attenuation by dense packed sand wall [J]. China Safety Science Journal,
2016, 26(10): 64–69. DOI: 10.16265/j.cnki.issn1003-3033.2016.10.012.
[9] 蔡改贫, 郭进山, 夏刘洋. 基于 Weibull 分布的 Bond 冲击破碎粒度分布特征 [J]. 金属矿山, 2016, 45(4): 118–121. DOI:
10.3969/j.issn.1001-1250.2016.04.024.
CAI G P, GUO J S, XIA L Y. Particle size distribution characteristics of Bond impact based on Weibull distribution [J]. Metal
Mine, 2016, 45(4): 118–121. DOI: 10.3969/j.issn.1001-1250.2016.04.024.
[10] 潘亚豪, 宗周红, 钱海敏, 等. 钙质砂介质中爆炸波传播规律的试验研究 [J]. 爆炸与冲击, 2023, 43(5): 053201. DOI:
10.11883/bzycj-2022-0117.
PAN Y H, ZONG Z H, QIAN H M, et al. Experimental study on blast wave propagation in calcareous sand [J]. Explosion and
Shock Waves, 2023, 43(5): 053201. DOI: 10.11883/bzycj-2022-0117.
[11] YU X, CHEN L, FANG Q, et al. Determination of attenuation effects of coral sand on the propagation of impact-induced
stress wave [J]. International Journal of Impact Engineering, 2019, 125: 63–82. DOI: 10.1016/j.ijimpeng.2018.11.004.
[12] 董凯, 任辉启, 阮文俊, 等. 爆炸冲击下珊瑚砂动态本构模型 [J]. 爆炸与冲击, 2021, 41(4): 043101. DOI: 10.11883/bzycj-
2020-0172.
DONG K, REN H Q, RUAN W J, et al. Dynamic constitutive model of coral sand under blast loading [J]. Explosion and
093101-16