Page 108 - 《爆炸与冲击》2025年第9期
P. 108

第 45 卷    第 9 期                   爆    炸    与    冲    击                       Vol. 45, No. 9
                2025 年 9 月                    EXPLOSION AND SHOCK WAVES                          Sept., 2025

               DOI:10.11883/bzycj-2024-0385


               爆破荷载作用下透明脆性材料的三维裂纹扩展行为                                                                    *


                                    陶子豪 ,李祥龙 ,王建国 ,胡启文 ,左    庭 ,胡    涛              1,2
                                                                            1,2
                                                           1,2
                                                                   1,2
                                          1,2
                                                  1,2
                                       (1. 昆明理工大学国土资源工程学院,云南 昆明 650093;
                                    2. 云南省教育厅爆破新技术工程研究中心,云南 昆明 650093)
                  摘要: 针对岩石等脆性材料在爆炸荷载作用下的裂纹扩展行为难以捕捉的问题,基于爆破损伤理论,利用有机玻
               璃脆性材料的透明特性进行了爆破模型试验,借助高速摄影技术和计算机断层扫描系统深入探究了爆破荷载作用下
               脆性材料的动态断裂行为和三维裂纹演化规律,结合三维扫描技术揭示了裂纹的三维形态和破裂面的形貌特征。结
               果表明:在多段爆破能量持续作用下,脆性材料的裂纹存在多次激发扩展的情况;爆炸冲击波产生的初始裂纹数密度
               高,呈鱼鳞状形貌从“崎岖”向“微波”过渡,平整度提高。其中,裂纹面高程的方差随着到爆心距离的增大从                                       0.796
               降低至  0.586;最大高度从    3.2 m  降低至  2.8 mm,降低了  12.5%。随着到爆心距离的增大,介质由压剪破坏向张拉破坏转
               变,裂纹分布区的分形维数和模型的损伤度降低。
                  关键词: 脆性材料;爆破荷载;动态断裂;三维裂纹;形貌特征
                  中图分类号: O382.2; TJ301   国标学科代码: 1303520; 44035   文献标志码: A


                   Three-dimensional crack propagation behaviors of transparent brittle
                                           materials under blasting load

                                                                          1,2
                                  1,2
                                                1,2
                                                                                     1,2
                                                               1,2
                         TAO Zihao , LI Xianglong , WANG Jianguo , HU Qiwen , ZUO Ting , HU Tao 1,2
                           (1. Faculty of Land Resources Engineering, Kunming University of Science and Technology,
                                                Kunming 650093, Yunnan, China;
                     2. Advanced Blasting Technology Engineering Research Center of Yunnan Province Education Department,
                                                Kunming 650093, Yunnan, China)
               Abstract:  The crack propagation behavior of brittle materials, such as rock, is often challenging to capture under explosive
               loading  conditions.  To  address  this  issue,  model  experiments  were  conducted  based  on  the  theory  of  explosive  damage,
               utilizing  transparent  polymethyl  methacrylate  as  a  surrogate  material  to  simulate  the  fracture  response  of  brittle  materials.
               High-speed photography and computed tomography scanning were employed to investigate the dynamic fracture process and
               three-dimensional  crack  evolution  under  blast  loading.  In  addition,  3D  scanning  technology  was  used  to  reconstruct  the
               morphology of cracks and characterize the fracture surface features. The results indicate that under the sustained action of
               multi-stage explosive energy, cracks undergo repeated initiation and propagation. Initial cracks induced by shock waves exhibit
               high density and a “fish scale” pattern, primarily concentrated around the blast hole. In contrast, secondary cracks driven by
               detonation gases have a lower density and extend outward in “ear-shaped” or “dagger-shaped” forms. As the distance from the
               explosion center increases, the crack surface morphology transitions from rugged to microwave-like textures, with improved
               flatness. Specifically, the elevation variance of the fracture surface decreases from 0.796 to 0.586, while the maximum height
               reduces  from  3.2  mm  to  2.8  mm,  representing  a  12.5%  reduction.  Moreover,  the  failure  mode  of  the  material  shifts  from



                 *   收稿日期: 2024-10-11;修回日期: 2025-04-27
                   基金项目: 国家自然科学基金(52274083);云南省重大科技专项(202202AG050014);云南省“兴滇英才支持计划”产业
                          创新人才项目(KKXY202421005)
                   第一作者: 陶子豪(1993- ),男,博士研究生,taozihao931108@163.com
                   通信作者: 李祥龙(1980- ),男,博士,教授,lxl00014002@163.com


                                                         093102-1
   103   104   105   106   107   108   109   110   111   112   113