Page 67 - 《爆炸与冲击》2025年第6期
P. 67

第 45 卷               胡学龙,等: 考虑动态拉压比影响的岩石损伤本构模型                                  第 6 期

                    420–427. DOI: 10.11817/j.issn.1672-7207.2019.02.022.
                    XIE F J, ZHANG J S, CHEN J H. Dynamic damage model of rock under impact loads of compression and tension [J]. Journal
                    of Central South University (Science and Technology), 2019, 50(2): 420–427. DOI: 10.11817/j.issn.1672-7207.2019.02.022.
               [18]   江雅勤, 吴帅峰, 刘殿书, 等. 基于元件组合理论的砂岩动态损伤本构模型 [J]. 爆炸与冲击, 2018, 38(4): 827–833. DOI:
                    10.11883/bzycj-2017-0173.
                    JIANG Y Q, WU S F, LIU D S, et al. Dynamic damage constitutive model of sandstone based on component combination
                    theory [J]. Explosion and Shock Waves, 2018, 38(4): 827–833. DOI: 10.11883/bzycj-2017-0173.
               [19]   SHU Y, ZHU Z M, WANG M, et al. A plastic damage constitutive model for rock-like material focusing on the hydrostatic
                    pressure induced damage and the interaction of tensile and shear damages under impact and blast loads [J]. Computers and
                    Geotechnics, 2022, 150: 104921. DOI: 10.1016/j.compgeo.2022.104921.
               [20]   HUANG L C, LIANG J G, MA J J, et al. A dynamic bounding surface plasticity damage model for rocks subjected to high
                    strain rates and confinements [J]. International Journal of Impact Engineering, 2022, 168: 104306. DOI: 10.1016/j.ijimpeng.
                    2022.104306.
               [21]   XU X, CHI L Y, YU Q, et al. An elastoplastic damage constitutive model for capturing dynamic enhancement effect of rock
                    and  concrete  through  equivalent  stress  history  [J].  International  Journal  of  Impact  Engineering,  2023,  181:  104736.  DOI:
                    10.1016/j.ijimpeng.2023.104736.
               [22]   YU M H, HE L N. A new model and theory on yield and failure of materials under the complex stress state [J]. Mechanical
                    Behaviour of Materials VI, 1992: 841-846. DOI: 10.1016/B978-0-08-037890-9.50389-6.
               [23]   YU M H, ZAN Y W, ZHAO J, et al. A unified strength criterion for rock material [J]. International Journal of Rock Mechanics
                    and Mining Sciences, 2002, 39(8): 975–989. DOI: 10.1016/S1365-1609(02)00097-7.
               [24]   SI X F, GONG F Q, LI X B, et al. Dynamic Mohr-Coulomb and Hoek-Brown strength criteria of sandstone at high strain rates[J].
                    International Journal of Rock Mechanics and Mining Sciences, 2019, 115: 48–59. DOI: 10.1016/j.ijrmms.2018.12.013.
               [25]   ALVES M. Material constitutive law for large strains and strain rates [J]. Journal of Engineering Mechanics, 2000, 126(2):
                    215–218. DOI: 10.1061/(ASCE)0733-9399(2000)126:2(215).
               [26]   XU  H,  WEN  H  M.  Semi-empirical  equations  for  the  dynamic  strength  enhancement  of  concrete-like  materials  [J].
                    International Journal of Impact Engineering, 2013, 60: 76–81. DOI: 10.1016/j.ijimpeng.2013.04.005.
               [27]   KAMRAN, IQBAL M A. A new material model for concrete subjected to high rate of loading [J]. International Journal of
                    Impact Engineering, 2023, 180: 104673. DOI: 10.1016/j.ijimpeng.2023.104673.
               [28]   OKUBO S, FUKUI K. Complete stress-strain curves for various rock types in uniaxial tension [J]. International Journal of
                    Rock  Mechanics  and  Mining  Sciences  &  Geomechanics  Abstracts,  1996,  33(6):  549–556.  DOI:  10.1016/0148-9062(96)
                    00024-1.
               [29]   OKUBO S, FUKUI K, QI Q X. Uniaxial compression and tension tests of anthracite and loading rate dependence of peak
                    strength [J]. International Journal of Coal Geology, 2006, 68(3/4): 196–204. DOI: 10.1016/j.coal.2006.02.004.
               [30]   HU X L, ZHANG M, ZHANG X Y, et al. A coupled elastoplastic damage dynamic model for rock [J]. Shock and Vibration,
                    2021, 2021: 5567019. DOI: 10.1155/2021/5567019.
               [31]   YU  M  H,  YANG  S  Y,  FAN  S  C,  et  al.  Unified  elasto-plastic  associated  and  non-associated  constitutive  model  and  its
                    engineering applications [J]. Computers & Structures, 1999, 71(6): 627–636. DOI: 10.1016/s0045-7949(98)00306-x.
               [32]   DE BORST R, CRISFIELD M A, REMMERS J J C, et al. Non-linear finite element analysis of solids and structures [M]. 2nd
                    ed. Hoboken: John Wiley & Sons, 2012.
               [33]   WAWERSIK W R, FAIRHURST C. A study of brittle rock fracture in laboratory compression experiments [J]. International
                    Journal  of  Rock  Mechanics  and  Mining  Sciences  &  Geomechanics  Abstracts,  1970,  7(5):  561–575.  DOI:  10.1016/0148-
                    9062(70)90007-0.
               [34]   SEAH C C, BØRVIK T, REMSET S, et al. Penetration and perforation of rock targets by hard projectiles [M]//ZHOU Y X,
                    ZHAO J. Advances in Rock Dynamics and Applications. Boca Raton: CRC Press, 2011.
                                                                                          (责任编辑    王小飞)







                                                         061412-12
   62   63   64   65   66   67   68   69   70   71   72