Page 192 - 《爆炸与冲击》2025年第6期
P. 192

第 45 卷              戚承志,等: 慢速和快速滑移下断层颗粒夹层的黏性特性                                  第 6 期

               [25]   GOLDSBY D L, TULLIS T E. Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates [J].
                    Science, 2011, 334(6053): 216–218. DOI: 10.1126/science.1207902.
               [26]   AHARONOV  E,  SCHOLZ  C  H.  A  physics-based  rock  friction  constitutive  law:  Steady  state  friction  [J].  Journal  of
                    Geophysical Research: Solid Earth, 2018, 123(2): 1591–1614. DOI: 10.1002/2016JB013829.
               [27]   SPAGNUOLO E, NIELSEN S, VIOLAY M, et al. An empirically based steady state friction law and implications for fault
                    stability [J]. Geophysical Research Letters, 2016, 43(7): 3263–71. DOI: 10.1002/2016GL067881.
               [28]   CHEN J Y, NIEMEIJER A R, SOIERS C J. Microphysical modeling of carbonate fault friction at slip rates spanning the full
                    seismic cycle [J]. Journal of Geophysical Research: Solid Earth, 2021, 126(3): 021024. DOI: 10.1029/2020JB021024.
               [29]   SELVADURAI  P,  GLASER  S.  Asperity  generation  and  its  relationship  to  seismicity  on  a  planar  fault:  A  laboratory
                    simulation [J]. Geophysical Journal International, 2017, 208(2): 1009–1025. DOI: 10.1093/gji/ggw439.
               [30]   RECHES Z, ZU X, CARPENTWER B M. Energy-flux control of the steady-state, creep, and dynamic slip modes of faults [J].
                    Scientific Reports, 2019, 9(1): 10627. DOI: 10.1038/s41598-019-46922-1.
               [31]   IKARI M J, MARONE C, SAFFER D M, et al. Slip weakening as a mechanism for slow earthquakes [J]. Nature Geosciences,
                    2013, 6(6): 468–472. DOI: 10.1038/NGEO18198.
               [32]   CHEN X, MADDEN A S, BICKMORE B R, et al. Dynamic weakening by nanoscale smoothing during high-velocity fault
                    slip [J]. Geology, 2013, 41(7): 739–7428. DOI: 10.1130/G34169.1.
               [33]   BYERLEE J D. Friction of rocks [J]. Pure and Applied Geophysics, 1978, 116(4/5): 615–626. DOI: 10.1007/BF00876528.
               [34]   CHESTER  J  S,  CHESTER  F  M,  KRONENBERG  A  K.  Fracture  surface  energy  of  the  Punchbowl  fault,  San  Andreas
                    system [J]. Nature, 2005, 437(7055): 133–136. DOI: 10.1038/nature03942.
               [35]   SIBSON  R  H.  Thickness  of  the  seismic  slip  zone[J].  Bulletin  of  the  Seismological  Society  of  America.  2003,  93  (3):
                    1169–1178. DOI:10.1785/0120020061.
               [36]   MAJMUDAR T S, BEHINGGER R P. Contact force measurements and stress induced anisotropy in granular materials [J].
                    Nature, 2005, 435(7045): 1079–1082. DOI: 10.1038/nature03805.
               [37]   ANTONY S J. Link between single-particle properties and macroscopic properties in particulate assemblies: role of structures
                    within structures [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
                    2007, 365(1861): 2879–2891. DOI: 10.1098/rsta.2007.0004.
               [38]   RICHEFEU  V,  El  YOUSSOUFI  MS,  AZEMA  E,  et  al.  Force  transmission  in  dry  and  wet  granular  media  [J].  Powder
                    Technology, 2009, 190(1/2): 258–263. DOI: 10.1016/j.powtec.2008.04.069.
               [39]   KOCHARYAN G G, NOVIKOV V A, OSTAPCHUK A A, et al. A study of different fault slip modes governed by the gouge
                    material composition in laboratory experiments [J]. Geophysical Journal International, 2017, 208(1): 521–528. DOI: 10.1093/
                    gji/ggw409.
               [40]   BUDKOV  A  M,  KOCHARYAN  G  G.  Experimental  study  of  different  modes  of  block  sliding  along  interface:  part  3:
                    numerical modeling [J]. Physical Mesomechanics, 2017, 20(2): 203–208. DOI: 10.1134/S1029959917020102.
               [41]   OSTAPCHUK  A  A,  MOROZOVA  K  G.  On  the  mechanism  of  laboratory  earthquake  nucleation  highlighted  by  acoustic
                    emission [J]. Scientific Reports, 2020, 10(1): 7245. DOI: 10.1038/s41598-020-64272-1.
               [42]   OSTAPCHUK A A, MOROZOVA K G, MARKOV V, et al. Acoustic emission reveals multiple slip modes on a frictional
                    fault [J]. Frontiers of Earth Science, 2021, 9: 657487. DOI: 10.3389/feart.2021.657487.
               [43]   LU  K,  BRODSY  E  E,  KAVEHPOUR  H  P.  Shear-weakening  of  the  transitional  regime  for  granular  flow:  the  role  of
                    compressibility [J]. Journal of Fluid Mechanics, 2007, 587: 347–372. DOI: 10.1017/S0022112007007331.
               [44]   HAYWARD K S, HAWKINS R, COX S F, et al. Rheological controls on asperity weakening during earthquake slip [J].
                    Journal of Geophysical Research: Solid Earth, 2019, 124(12): 12736–12762. DOI: 10.1029/2019JB018231.
               [45]   POZZI G, PAOLA N, NIELSEN S, et al. Coseismic fault lubrication by viscous deformation [J]. Nature Geoscience, 2021,
                    14(6): 437–442. DOI: 10.1038/s41561-021-00747-8.
               [46]   FAGERENG  A,  BEALL  A.  Is  complex  fault  zone  behaviour  a  reflection  of  rheological  heterogeneity?  [J].  Philosophical
                    Transactions of the Royal Society A, 2021, 379(2193): 20190421. DOI: 10.1098/rsta.2019.0421.
               [47]   RADIONOV V N, SIZOV I A, TSVETKOV V M. Fundamental of geomechanics[M], Nedra, Moscow, 1986.
               [48]   TURUNTAEV S B, KULIJKIN A M, GERASOMOVZ T I, et al. Dynamics of localization shear deformation in sand [J].
                    Doklady Akademii Nauk (Reports of Russian Academy of Science), 1997, 354(1): 105–108.


                                                         061443-9
   187   188   189   190   191   192   193   194