Page 192 - 《爆炸与冲击》2025年第6期
P. 192
第 45 卷 戚承志,等: 慢速和快速滑移下断层颗粒夹层的黏性特性 第 6 期
[25] GOLDSBY D L, TULLIS T E. Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates [J].
Science, 2011, 334(6053): 216–218. DOI: 10.1126/science.1207902.
[26] AHARONOV E, SCHOLZ C H. A physics-based rock friction constitutive law: Steady state friction [J]. Journal of
Geophysical Research: Solid Earth, 2018, 123(2): 1591–1614. DOI: 10.1002/2016JB013829.
[27] SPAGNUOLO E, NIELSEN S, VIOLAY M, et al. An empirically based steady state friction law and implications for fault
stability [J]. Geophysical Research Letters, 2016, 43(7): 3263–71. DOI: 10.1002/2016GL067881.
[28] CHEN J Y, NIEMEIJER A R, SOIERS C J. Microphysical modeling of carbonate fault friction at slip rates spanning the full
seismic cycle [J]. Journal of Geophysical Research: Solid Earth, 2021, 126(3): 021024. DOI: 10.1029/2020JB021024.
[29] SELVADURAI P, GLASER S. Asperity generation and its relationship to seismicity on a planar fault: A laboratory
simulation [J]. Geophysical Journal International, 2017, 208(2): 1009–1025. DOI: 10.1093/gji/ggw439.
[30] RECHES Z, ZU X, CARPENTWER B M. Energy-flux control of the steady-state, creep, and dynamic slip modes of faults [J].
Scientific Reports, 2019, 9(1): 10627. DOI: 10.1038/s41598-019-46922-1.
[31] IKARI M J, MARONE C, SAFFER D M, et al. Slip weakening as a mechanism for slow earthquakes [J]. Nature Geosciences,
2013, 6(6): 468–472. DOI: 10.1038/NGEO18198.
[32] CHEN X, MADDEN A S, BICKMORE B R, et al. Dynamic weakening by nanoscale smoothing during high-velocity fault
slip [J]. Geology, 2013, 41(7): 739–7428. DOI: 10.1130/G34169.1.
[33] BYERLEE J D. Friction of rocks [J]. Pure and Applied Geophysics, 1978, 116(4/5): 615–626. DOI: 10.1007/BF00876528.
[34] CHESTER J S, CHESTER F M, KRONENBERG A K. Fracture surface energy of the Punchbowl fault, San Andreas
system [J]. Nature, 2005, 437(7055): 133–136. DOI: 10.1038/nature03942.
[35] SIBSON R H. Thickness of the seismic slip zone[J]. Bulletin of the Seismological Society of America. 2003, 93 (3):
1169–1178. DOI:10.1785/0120020061.
[36] MAJMUDAR T S, BEHINGGER R P. Contact force measurements and stress induced anisotropy in granular materials [J].
Nature, 2005, 435(7045): 1079–1082. DOI: 10.1038/nature03805.
[37] ANTONY S J. Link between single-particle properties and macroscopic properties in particulate assemblies: role of structures
within structures [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
2007, 365(1861): 2879–2891. DOI: 10.1098/rsta.2007.0004.
[38] RICHEFEU V, El YOUSSOUFI MS, AZEMA E, et al. Force transmission in dry and wet granular media [J]. Powder
Technology, 2009, 190(1/2): 258–263. DOI: 10.1016/j.powtec.2008.04.069.
[39] KOCHARYAN G G, NOVIKOV V A, OSTAPCHUK A A, et al. A study of different fault slip modes governed by the gouge
material composition in laboratory experiments [J]. Geophysical Journal International, 2017, 208(1): 521–528. DOI: 10.1093/
gji/ggw409.
[40] BUDKOV A M, KOCHARYAN G G. Experimental study of different modes of block sliding along interface: part 3:
numerical modeling [J]. Physical Mesomechanics, 2017, 20(2): 203–208. DOI: 10.1134/S1029959917020102.
[41] OSTAPCHUK A A, MOROZOVA K G. On the mechanism of laboratory earthquake nucleation highlighted by acoustic
emission [J]. Scientific Reports, 2020, 10(1): 7245. DOI: 10.1038/s41598-020-64272-1.
[42] OSTAPCHUK A A, MOROZOVA K G, MARKOV V, et al. Acoustic emission reveals multiple slip modes on a frictional
fault [J]. Frontiers of Earth Science, 2021, 9: 657487. DOI: 10.3389/feart.2021.657487.
[43] LU K, BRODSY E E, KAVEHPOUR H P. Shear-weakening of the transitional regime for granular flow: the role of
compressibility [J]. Journal of Fluid Mechanics, 2007, 587: 347–372. DOI: 10.1017/S0022112007007331.
[44] HAYWARD K S, HAWKINS R, COX S F, et al. Rheological controls on asperity weakening during earthquake slip [J].
Journal of Geophysical Research: Solid Earth, 2019, 124(12): 12736–12762. DOI: 10.1029/2019JB018231.
[45] POZZI G, PAOLA N, NIELSEN S, et al. Coseismic fault lubrication by viscous deformation [J]. Nature Geoscience, 2021,
14(6): 437–442. DOI: 10.1038/s41561-021-00747-8.
[46] FAGERENG A, BEALL A. Is complex fault zone behaviour a reflection of rheological heterogeneity? [J]. Philosophical
Transactions of the Royal Society A, 2021, 379(2193): 20190421. DOI: 10.1098/rsta.2019.0421.
[47] RADIONOV V N, SIZOV I A, TSVETKOV V M. Fundamental of geomechanics[M], Nedra, Moscow, 1986.
[48] TURUNTAEV S B, KULIJKIN A M, GERASOMOVZ T I, et al. Dynamics of localization shear deformation in sand [J].
Doklady Akademii Nauk (Reports of Russian Academy of Science), 1997, 354(1): 105–108.
061443-9