Page 191 - 《爆炸与冲击》2025年第6期
P. 191
第 45 卷 戚承志,等: 慢速和快速滑移下断层颗粒夹层的黏性特性 第 6 期
链的生存时间;而在高速滑移情况下,介质的松弛时间取决于涡旋的生存时间。随着应变率增大,夹层
的颗粒介质内部结构的生存时间减小,黏性系数也减小。
参考文献:
[1] SADOVSKY M A, BOLKHOVITINOV L G, PISARENKO V F. Deformation of geophysical medium and seismic
process[M]. Nauka, Moscow, 1987.
[2] BRACE W F, BYERLEE J D. Stick-slip as a mechanism for earthquake [J]. Science, 1966, 153(3739): 990–992. DOI:
10.1126/science.153.3739.990.
[3] KOSTROV B V. Mechanics of sources of tectonic earthquakes[M]. Nauka, Moscow, 1975.
[4] KANAMORI H, STEWART G S. Mode of strain release along Gibbs fracture zone, mid-atlantic ridge [J]. Physics of the
Earth and Planetary Interiors, 1976, 11(4): 312–332. DOI: 10.1016/0031-9201(76)90018-2.
[5] AKI K, BOUCHON M, CHOUET B, et al. Quantitative prediction of strong motion for a potential earthquake fault [J]. Annals
of Geophysics, 2010, 53(1): 81–91. DOI: 10.4401/ag-4665.
[6] MYACHKIN V I. Preparation processes of earthquakes[M]. Nauka, Moscow, 1978.
[7] DIETRICH J H. Modeling of rock friction: 1. experimental results and constitutive equations [J]. Journal of Geophysical
Research, 1979, 84(B5): 2161–2168. DOI: 10.1029/JB084iB05p02161.
[8] RICE J R, RUINA A L. Stability of steady frictional slipping [J]. Journal of Applied Mechanics, 1983, 50(2): 343–349. DOI:
10.1115/1.3167042.
[9] SCHOLZ C H. The Mechanics of Earthquakes and Faulting[M]. Cambridge University Press, 1990.
[10] DOBROVOLSKY I P. Theory of preparation of tectonic earthquakes[M]. Nauka, Moscow, 1991.
[11] DOBROVOLSKY I P. The mathematical theory of earthquake preparation and prediction[M]. Fizmatlit, Moscow, 2009.
[12] SOBOLEV G A, PONOMOREV A V. The Physics of Earthquakes and Precursors[M]. Nauka, Moscow, 2003.
[13] KOCHARYAN G G. Geomechanics of faults[M]. Geos, Moscow, 2016.
[14] SCHOLZ C H, CAMPOS J. The seismic coupling of subduction zones revisited [J]. Journal of Geophysical Research, 2012,
117(B5): 1–22. DOI: 10.1029/2011JB009003.
[15] CARPENTER B M, IKARI M J, MARONE C. Laboratory observations of time-dependent frictional strengthening and stress
relaxation in natural and synthetic fault gouges [J]. Journal of Geophysical Research: Solid Earth, 2016, 121(2): 1183–1201.
DOI: 10.1002/2015JB012136.
[16] IKARI M J, MARONE C, SAFFER D M. On the relation between fault strength and frictional stability [J]. Geology, 2011,
39(1): 83–86. DOI: 10.1130/G31416.1.
[17] BOATWRIGHT J, COCCO M. Frictional constraints on crustal faulting [J]. Journal of Geophysical Research, 1996, 101(B6):
13895–13909. DOI: 10.1029/96jb00405.
[18] PERSSON B N J. Sliding friction: physical principles and applications[M]. Nano Science and Technology. Springer-Verlag,
Berlin and Heidelberg, 1998.
[19] MUSER M H, URBAKH M, ROBBINS M O. Statistical mechanics of static and low-velocity kinetic friction [J]. Advances in
Chemical Physics, 2003, 126: 187–272.
[20] BAUBERGER T, CAROLI C. Solid friction from stick-slip down to pinning and aging [J]. Advances in Physics., 2006, 55(3/4):
279–348. DOI: 10.1080/00018730600732186.
[21] ZHENG G, RICE J R. Conditions under which velocity-weakening friction allows a self-healing versus a cracklike mode of
rupture [J]. Bulletin of the Seismological Society of America, 1998, 88(6): 1466–1483. DOI: 10.1016/S0040-1951(98)00192-9.
[22] RICE J R, LAPUSTA N, RANJITH K. Rate and state dependent friction and the stability of sliding between elastically
deformable solids [J]. Journal of Mechanics and Physics of Solids, 2001, 49(9): 1865–1898. DOI: 10.1016/S0022-5096(01)
00042-4.
[23] DI TORO G, HIROSE T, NIELSEN S, et al. Natural and experimental evidence of melt lubrication of faults during
earthquakes [J]. Science, 2006, 311(5761): 647–649. DOI: 10.1126/science.1121012.
[24] DI TORO G, HAN R, HIROSE T, et al. Fault lubrication during earthquakes [J]. Nature, 2011, 471(7339): 494–8. DOI:
10.1038/nature09838.
061443-8