Page 22 - 《爆炸与冲击》2025年第5期
P. 22

第 45 卷    第 5 期                   爆    炸    与    冲    击                       Vol. 45, No. 5
                2025 年 5 月                    EXPLOSION AND SHOCK WAVES                          May, 2025

               DOI:10.11883/bzycj-2024-0099


                              端到端机器学习代理模型构建及其

                                     在爆轰驱动问题中的应用                                  *


                                               柏劲松,刘    洋,陈    翰,钟    敏

                       (中国工程物理研究院流体物理研究所冲击波物理与爆轰物理全国重点实验室,四川 绵阳 621999)

                  摘要: 人工智能/机器学习方法能够发现数据中隐藏的物理规律,构建状态参数与动态结果之间端到端的代理模
               型,可高效解决强耦合、非线性、多物理等复杂工程问题。在高度非线性的爆炸与冲击动力学领域,选择了一个经典
               的爆轰驱动问题作为研究对象,以数值模拟结果作为机器学习代理模型的训练数据,将正向模拟与逆向设计有机结合
               起来,基于深度神经网络技术,构建了特征位置速度剖面、材料动态变形与工程因素之间端到端的代理模型,给出了
               代理模型的计算精确度,验证了代理模型从速度剖面反演工程因素的能力。结果表明:端到端代理模型具有较高的预
               测能力,其预测的速度剖面与工程因素估计的相对误差均小于                      1%,可用于高度非线性的爆炸与冲击动力学问题的快
               速设计、高精度预测和敏捷迭代。
                  关键词: 计算爆炸力学;爆轰驱动;人工智能;机器学习;端到端代理模型;深度神经网络
                  中图分类号: O389   国标学科代码: 13035   文献标志码: A


                        Construction of end-to-end machine learning surrogate model
                               and its application in detonation driving problem

                                       BAI Jingsong, LIU Yang, CHEN Han, ZHONG Min
                           (National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics,
                                 China Academy of Engineering Physics, Mianyang 621999, Sichuan, China)

               Abstract:  Artificial intelligence/machine learning methods can discover hidden physical patterns in data. By constructing an
               end-to-end surrogate model between state parameters and dynamic results, many complex engineering problems such as strong
               coupling,  nonlinearity,  and  multiphysics  can  be  efficiently  solved.  In  the  field  of  highly  nonlinear  explosion  and  shock
               dynamics,  a  classic  detonation  driving  problem  was  chosen  as  the  research  object.  Using  numerical  simulation  results  as
               training data for machine learning surrogate models, and combining forward simulation and reverse design organically. Based
               on deep neural network technology, an end-to-end surrogate model was constructed between feature position velocity profiles,
               material dynamic deformation, and engineering factors. And the calculation accuracy of the surrogate model was provided,
               verifying  the  ability  to  invert  engineering  factors  from  velocity  profiles.  The  research  results  indicate  that  the  end-to-end
               surrogate  model  has  high  predictive  ability,  with  relative  errors  of  less  than  1%  in  both  velocity  profile  prediction  and
               engineering factor estimation. It can be applied to the rapid design, high-precision prediction, and agile iteration of highly
               nonlinear explosion and impact dynamics problems.
               Keywords:  computational explosion mechanics; detonation drive; artificial intelligence; machine learning; end-to-end
               surrogate model; deep neural network

                   人工智能(artificial intelligence,AI)是能够和人一样进行感知、认知、决策和执行的人工程序或系
               统,是新一轮科技革命和产业变革的重要驱动力量。我国在人工智能方面取得了长足进步,集群作战、




                 *   收稿日期: 2024-04-10;修回日期: 2024-08-15
                   第一作者: 柏劲松(1968- ),男,博士,研究员,bjsong@foxmail.com
                   通信作者: 刘 洋(1987- ),男,博士,助理研究员,blonster@163.com


                                                         051101-1
   17   18   19   20   21   22   23   24   25   26   27