Page 20 - 《爆炸与冲击》2025年第5期
P. 20
第 45 卷 王 帅,等: 锯齿外形对弹体带攻角侵彻横向过载的影响 第 5 期
[2] 诺曼·琼斯. 结构冲击 [M]. 许骏, 蒋平, 译. 北京: 国防工业出版社, 2018: Ⅹ–Ⅺ.
JONES N. Structural impact [M]. Translated by XU J, JIANG P. Beijing: National Defense Industry Press, 2018: Ⅹ–Ⅺ.
[3] WANG S, XU F, ZHANG X Y, et al. A directional framework of similarity laws for geometrically distorted structures
subjected to impact loads [J]. International Journal of Impact Engineering, 2022, 161: 104092. DOI: 10.1016/j.ijimpeng.
2021.104092.
[4] 陈小伟. 穿甲/侵彻力学的理论建模与分析 [M]. 北京: 科学出版社, 2019: 281–470.
CHEN X W. Modelling on the perforation and penetration [M]. Beijing: Science Press, 2019: 281–470.
[5] BEN-DOR G, DUBINSKY A, ELPERIN T. 高速侵彻动力学: 工程模型和方法 [M]. 武海军, 黄风雷, 皮爱国, 译. 北京: 科
学出版社, 2020: 241–298.
BEN-DOR G, DUBINSKY A, ELPERIN T. High-speed penetration dynamics: engineering models and methods [M].
Translated by WU H J, HUANG F L, PI A G. Beijing: Science Press, 2020: 241–298.
[6] JONES S E, RULE W K, JEROME D M, et al. On the optimal nose geometry for a rigid penetrator [J]. Computational
Mechanics, 1998, 22(5): 413–417. DOI: 10.1007/s004660050373.
[7] BEN-DOR G, DUBINSKY A, ELPERIN T. Shape optimization of impactor penetrating into concrete or limestone targets [J].
International Journal of Solids and Structures, 2003, 40(17): 4487–4500. DOI: 10.1016/S0020-7683(03)00212-9.
[8] 刘坚成, 黄风雷, 皮爱国, 等. 异型头部弹体增强侵彻性能机理研究 [J]. 爆炸与冲击, 2014, 34(4): 409–414. DOI:
10.11883/1001-1455(2014)04-0409-06.
LIU J C, HUANG F L, PI A G, et al. On enhanced penetration performance of modified nose projectiles [J]. Explosion and
Shock Waves, 2014, 34(4): 409–414. DOI: 10.11883/1001-1455(2014)04-0409-06.
[9] 柴传国, 武海军, 皮爱国, 等. 异形头部弹体中低速侵彻混凝土的实验研究 [J]. 北京理工大学学报, 2015, 35(8): 787–791.
DOI: 10.15918/j.tbit1001-0645.2015.08.004.
CHAI C G, WU H J, PI A G, et al. Experimental study on nose headed penetrator penetrating to concrete target with middle
and low speed [J]. Transactions of Beijing Institute of Technology, 2015, 35(8): 787–791. DOI: 10.15918/j.tbit1001-
0645.2015.08.004.
[10] 张欣欣, 武海军, 黄风雷, 等. 刻槽弹侵彻混凝土受力模型研究 [J]. 爆炸与冲击, 2016, 36(1): 75–80. DOI: 10.11883/1001-
1455(2016)01-0075-06.
ZHANG X X, WU H J, HUANG F L, et al. Mechanical model of the grooved-tapered projectile penetrating concrete
targets [J]. Explosion and Shock Waves, 2016, 36(1): 75–80. DOI: 10.11883/1001-1455(2016)01-0075-06.
[11] 皮爱国, 黄风雷. 大长细比动能弹体弹塑性动力响应数值模拟 [J]. 北京理工大学学报, 2007, 27(8): 666–670. DOI:
10.3969/j.issn.1001-0645.2007.08.003.
PI A G, HUANG F L. Numerical simulation of the elastic-plastic dynamic response of a slender kinetic energy penetrator [J].
Transactions of Beijing Institute of Technology, 2007, 27(8): 666–670. DOI: 10.3969/j.issn.1001-0645.2007.08.003.
[12] CHEN X W, LI Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics [J].
International Journal of Impact Engineering, 2002, 27(6): 619–637. DOI: 10.1016/S0734-743X(02)00005-2.
[13] 高旭东, 李庆明. 带攻角斜侵彻混凝土的弹道偏转分析 [J]. 兵工学报, 2014, 35(S2): 33–39.
GAO X D, LI Q M. Trajectory analysis of projectile obliquely penetrating into concrete target at attack angle [J]. Acta
Armamentarii, 2014, 35(S2): 33–39.
[14] 尹放林, 王明洋, 钱七虎, 等. 弹丸斜入射对侵彻深度的影响 [J]. 爆炸与冲击, 1998, 18(1): 69–76. DOI: 10.11883/1001-
1455(1998)01-0069-8.
YIN F L, WANG M Y, QIAN Q H, et al. Penetration depth of projectile oblique into target [J]. Explosion and Shock Waves,
1998, 18(1): 69–76. DOI: 10.11883/1001-1455(1998)01-0069-8.
[15] 闪雨, 黄风雷, 武海军, 等. 动能弹非正侵彻弹道稳定性研究 [C]//第六届全国强动载效应及防护学术会议暨 2014 年复杂
介质/结构的动态力学行为创新研究群体学术研讨会论文集. 北京: 中国力学学会爆炸力学专业委员会, 2014: 450–459.
[16] 段卓平, 李淑睿, 马兆芳, 等. 刚性弹体斜侵彻贯穿混凝土靶的姿态偏转理论模型 [J]. 爆炸与冲击, 2019, 39(6): 063302.
DOI: 10.11883/bzycj-2018-0411.
DUAN Z P, LI S R, MA Z F, et al. Analytical model for attitude deflection of rigid projectile during oblique perforation of
concrete targets [J]. Explosion and Shock Waves, 2019, 39(6): 063302. DOI: 10.11883/bzycj-2018-0411.
[17] 何丽灵, 郭虎, 陈小伟, 等. 结构变形对深侵彻弹体偏转的影响 [J]. 爆炸与冲击, 2023, 43(9): 091404. DOI: 10.11883/bzycj-
051001-17