Page 182 - 《爆炸与冲击》2025年第5期
P. 182

第 45 卷               赵江平,等: 增材制造用铝及铝硅合金粉尘的爆炸特性                                  第 5 期


               参考文献:
               [1]   ALAMI A H, OLABI A G, ALASHKAR A, et al. Additive manufacturing in the aerospace and automotive industries: recent
                    trends and role in achieving sustainable development goals [J]. Ain Shams Engineering Journal, 2023, 14(11): 102516. DOI:
                    10.1016/j.asej.2023.102516.
               [2]   马如龙, 彭超群, 王日初, 等. 选区激光熔化铝合金的研究进展 [J]. 中国有色金属学报, 2020, 30(12): 2773–2788. DOI:
                    10.11817/j.ysxb.1004.0609.2020-37780.
                    MA  R  L,  PENG  C  Q,  WANG  R  C,  et  al.  Progress  in  selective  laser  melted  aluminum  alloy  [J].  The  Chinese  Journal  of
                    Nonferrous Metals, 2020, 30(12): 2773–2788. DOI: 10.11817/j.ysxb.1004.0609.2020-37780.
               [3]   ABOULKHAIR  N  T,  SIMONELLI  M,  PARRY  L,  et  al.  3D  printing  of  Aluminium  alloys:  additive  Manufacturing  of
                    Aluminium alloys using selective laser melting [J]. Progress in Materials Science, 2019, 106: 100578. DOI: 10.1016/j.pmatsci.
                    2019.100578.
               [4]   CASTELLANOS D, CARRETO-VAZQUEZ V H, MASHUGA C V, et al. The effect of particle size polydispersity on the
                    explosibility  characteristics  of  aluminum  dust  [J].  Powder  Technology,  2014,  254:  331–337.  DOI:  10.1016/j.powtec.2013.
                    11.028.
               [5]   张阳军, 陈英. 金属材料增材制造技术的应用研究进展 [J]. 粉末冶金工业, 2018, 28(1): 63–67. DOI: 10.13228/j.
                    boyuan.issn1006-6543.20170027.
                    ZHANG  Y  J,  CHEN  Y.  Research  on  the  application  of  metal  additive  manufacturing  technology  [J].  Powder  Metallurgy
                    Industry, 2018, 28(1): 63–67. DOI: 10.13228/j.boyuan.issn1006-6543.20170027.
               [6]   JIANG H P, BI M S, LI B, et al. Inhibition evaluation of ABC powder in aluminum dust explosion [J]. Journal of Hazardous
                    Materials, 2019, 361: 273–282. DOI: 10.1016/j.jhazmat.2018.07.045.
               [7]   LIN S, LIU Z T, QIAN J F, et al. Comparison on the explosivity of coal dust and of its explosion solid residues to assess the
                    severity of re-explosion [J]. Fuel, 2019, 251: 438–446. DOI: 10.1016/j.fuel.2019.04.080.
               [8]   陈晓坤, 张自军, 王秋红, 等. 20L  近球形容器中微米级铝粉的爆炸特性 [J]. 爆炸与冲击, 2018, 38(5): 1130–1136. DOI:
                    10.11883/bzycj-2017-0101.
                    CHEN  X  K,  ZHANG  Z  J,  WANG  Q  H,  et  al.  Explosion  characteristics  of  micro-sized  aluminum  dust  in  20  L  spherical
                    vessel [J]. Explosion and Shock Waves, 2018, 38(5): 1130–1136. DOI: 10.11883/bzycj-2017-0101.
               [9]   REN X F, ZHANG J S. Correlation between particle size distribution and explosion intensity of aluminum powder [J]. Journal
                    of Loss Prevention in the Process Industries, 2022, 80: 104896. DOI: 10.1016/j.jlp.2022.104896.
               [10]   KIM W, SAEKI R, UENO Y, et al. Effect of particle size on the minimum ignition energy of aluminum powders [J]. Powder
                    Technology, 2023, 415: 118190. DOI: 10.1016/j.powtec.2022.118190.
               [11]   文虎, 杨玉峰, 王秋红, 等. 矩形管道中微米级铝粉爆炸实验 [J]. 爆炸与冲击, 2018, 38(5): 993–998. DOI: 10.11883/bzycj-
                    2016-0003.
                    WEN  H,  YANG  Y  F,  WANG  Q  H,  et  al.  Experimental  study  on  micron-sized  aluminum  dust  explosion  in  a  rectangular
                    pipe [J]. Explosion and Shock Waves, 2018, 38(5): 993–998. DOI: 10.11883/bzycj-2016-0003.
               [12]   ZHANG  S  L,  BI  M  S,  YANG  M  R,  et  al.  Flame  propagation  characteristics  and  explosion  behaviors  of  aluminum  dust
                    explosions in a horizontal pipeline [J]. Powder Technology, 2020, 359: 172–180. DOI: 10.1016/j.powtec.2019.10.009.
               [13]   CHANG P J, MOGI T, DOBASHI R. An investigation on the dust explosion of micron and nano scale aluminium particles [J].
                    Journal of Loss Prevention in the Process Industries, 2021, 70: 104437. DOI: 10.1016/j.jlp.2021.104437.
               [14]   吴建星, 龚友成, 金湘. 环境温度对粉尘爆炸参数的影响 [J]. 工业安全与环保, 2007, 33(11): 32–33. DOI: 10.3969/j.issn.
                    1001-425X.2007.11.014.
                    WU J X, GONG Y C, JIN X. Influences of the environment temperature on dust explosion parameters [J]. Industrial Safety
                    and Environmental Protection, 2007, 33(11): 32–33. DOI: 10.3969/j.issn.1001-425X.2007.11.014.
               [15]   FENG Y C, XIA Z X, HUANG L Y, et al. Effect of ambient temperature on the ignition and combustion process of single
                    aluminium particles [J]. Energy, 2018, 162: 618–629. DOI: 10.1016/j.energy.2018.08.066.
               [16]   王秋红, 闵锐, 孙艺林, 等. 抛光工艺中镁铝合金粉燃爆参数分析 [J]. 中南大学学报                   (自然科学版), 2020, 51(5):
                    1211–1220. DOI: 10.11817/j.issn.1672-7207.2020.05.005.
                    WANG Q H, MIN R, SUN Y L, et al. Analysis of magnesium-aluminum alloy powder burning explosion parameters in the


                                                         055401-10
   177   178   179   180   181   182   183   184