Page 183 - 《爆炸与冲击》2025年第5期
P. 183
第 45 卷 赵江平,等: 增材制造用铝及铝硅合金粉尘的爆炸特性 第 5 期
polishing process [J]. Journal of Central South University (Science and Technology), 2020, 51(5): 1211–1220. DOI: 10.11817/
j.issn.1672-7207.2020.05.005.
[17] LUO J W, WANG Q H, CHUNG Y H, et al. Hazard evaluation, explosion risk, and thermal behaviour of magnesium-
aluminium alloys during the polishing process by using a 20-L apparatus, MIEA, and TGA [J]. Process Safety and
Environmental Protection, 2021, 153: 268–277. DOI: 10.1016/j.psep.2021.07.014.
[18] 马万太, 蒋云泽, 史志翔, 等. 高硅铝合金粉尘云燃爆特性研究 [J]. 工业安全与环保, 2023, 49(3): 76–80. DOI: 10.3969/
j.issn.1001-425X.2023.03.018.
MA W T, JIANG Y Z, SHI Z X, et al. Study on the dust clouds ignition and explosion characteristics of aluminum alloy with
higher silicon contents [J]. Industrial Safety and Environmental Protection, 2023, 49(3): 76–80. DOI: 10.3969/j.issn.1001-
425X.2023.03.018.
[19] VAZ N G, SHANCITA I, PANTOYA M L. Thermal oxidation analysis of aerosol synthesized fuel particles composed of Al
versus Al-Si [J]. Powder Technology, 2021, 382: 532–540. DOI: 10.1016/j.powtec.2021.01.018.
[20] MILLOGO M, BERNARD S, GILLARD P. Combustion characteristics of pure aluminum and aluminum alloys powders [J].
Journal of Loss Prevention in the Process Industries, 2020, 68: 104270. DOI: 10.1016/j.jlp.2020.104270.
[21] BERNARD S, GILLARD P, FRASCATI F. Ignition and explosibility of aluminium alloys used in additive layer
manufacturing [J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 888–895. DOI: 10.1016/j.jlp.2017.04.014.
[22] 孙思衡, 孙艳, 贾存锋, 等. 增材制造用金属粉末爆炸敏感性研究 [J]. 粉末冶金技术, 2020, 38(4): 249–256. DOI: 10.19591/
j.cnki.cn11-1974/tf.2020010009.
SUN S H, SUN Y, JIA C F, et al. Study on the explosion sensitivity of metal powders used in additive manufacturing [J].
Powder Metallurgy Technology, 2020, 38(4): 249–256. DOI: 10.19591/j.cnki.cn11-1974/tf.2020010009.
[23] CASTELLANOS D, BAGARIA P, MASHUGA V C. Effect of particle size polydispersity on dust cloud minimum ignition
energy [J]. Powder Technology, 2020, 367: 782–787. DOI: 10.1016/j.powtec.2020.04.037.
[24] ASTM International. ASTM E1515-14 Standard test method for minimum explosible concentration of combustible dusts[S].
West Conshohocken: ASTM International, 2014: 1–6. DOI: 10.1520/E1515-14.
[25] 赵江平, 王振成. 热爆炸理论在粉尘爆炸机理研究中的应用 [J]. 中国安全科学学报, 2004, 14(5): 80–83. DOI: 10.16265/
j.cnki.issn1003-3033.2004.05.020.
ZHAO J P, WANG Z C. Application of heat explosion theory to dust explosion mechanism research [J]. China Safety Science
Journal, 2004, 14(5): 80–83. DOI: 10.16265/j.cnki.issn1003-3033.2004.05.020.
[26] KUAI N S, HUANG W X, DU B, et al. Experiment-based investigations on the effect of ignition energy on dust explosion
behaviors [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4): 869–877. DOI: 10.1016/j.jlp.2013.03.005.
[27] KIM T S, LEE B T, LEE C R, et al. Microstructure of rapidly solidified Al–20Si alloy powders [J]. Materials Science and
Engineering: A, 2001, 304/305/306: 617–620. DOI: 10.1016/S0921-5093(00)01546-X.
[28] ZHOU Z Q, CHAI L J, ZHANG Y L, et al. Experimental study on oxidation and shell-breaking characteristics of individual
aluminum particles at high temperature [J]. Powder Technology, 2024, 431: 119087. DOI: 10.1016/j.powtec.2023.119087.
[29] DEAL B E, GROVE A S. General relationship for the thermal oxidation of silicon [J]. Journal of Applied Physics, 1965,
36(12): 3770–3778. DOI: 10.1063/1.1713945.
[30] 曹卫国. 褐煤粉尘爆炸特性实验及机理研究 [D]. 南京: 南京理工大学, 2016. DOI: 10.7666/d.Y3192770.
CAO W G. Experimental and mechanism study on explosion characteristic of lignite coal dust [D]. Nanjing: Nanjing
University of Science and Technology, 2016. DOI: 10.7666/d.Y3192770.
[31] BALLANTYNE A, MOSS J B. Fine wire thermocouple measurements of fluctuating temperature [J]. Combustion Science
and Technology, 1977, 17(1/2): 63–72. DOI: 10.1080/00102209708946813.
[32] MA X S, MENG X B, LI Z Y, et al. Study of the influence of melamine polyphosphate and aluminum hydroxide on the flame
propagation and explosion overpressure of aluminum magnesium alloy dust [J]. Journal of Loss Prevention in the Process
Industries, 2020, 68: 104291. DOI: 10.1016/j.jlp.2020.104291.
[33] ZHANG T J, ZHANG Z L, ZHU C C, et al. Inhibition effects of aluminum dust explosions by various kinds of ammonium
polyphosphate [J]. Journal of Loss Prevention in the Process Industries, 2023, 83: 105083. DOI: 10.1016/j.jlp.2023.105083.
(责任编辑 蔡国艳)
055401-11