Page 183 - 《爆炸与冲击》2025年第5期
P. 183

第 45 卷               赵江平,等: 增材制造用铝及铝硅合金粉尘的爆炸特性                                  第 5 期

                    polishing process [J]. Journal of Central South University (Science and Technology), 2020, 51(5): 1211–1220. DOI: 10.11817/
                    j.issn.1672-7207.2020.05.005.
               [17]   LUO  J  W,  WANG  Q  H,  CHUNG  Y  H,  et  al.  Hazard  evaluation,  explosion  risk,  and  thermal  behaviour  of  magnesium-
                    aluminium  alloys  during  the  polishing  process  by  using  a  20-L  apparatus,  MIEA,  and  TGA  [J].  Process  Safety  and
                    Environmental Protection, 2021, 153: 268–277. DOI: 10.1016/j.psep.2021.07.014.
               [18]   马万太, 蒋云泽, 史志翔, 等. 高硅铝合金粉尘云燃爆特性研究 [J]. 工业安全与环保, 2023, 49(3): 76–80. DOI: 10.3969/
                    j.issn.1001-425X.2023.03.018.
                    MA W T, JIANG Y Z, SHI Z X, et al. Study on the dust clouds ignition and explosion characteristics of aluminum alloy with
                    higher  silicon  contents  [J].  Industrial  Safety  and  Environmental  Protection,  2023,  49(3):  76–80.  DOI:  10.3969/j.issn.1001-
                    425X.2023.03.018.
               [19]   VAZ N G, SHANCITA I, PANTOYA M L. Thermal oxidation analysis of aerosol synthesized fuel particles composed of Al
                    versus Al-Si [J]. Powder Technology, 2021, 382: 532–540. DOI: 10.1016/j.powtec.2021.01.018.
               [20]   MILLOGO M, BERNARD S, GILLARD P. Combustion characteristics of pure aluminum and aluminum alloys powders [J].
                    Journal of Loss Prevention in the Process Industries, 2020, 68: 104270. DOI: 10.1016/j.jlp.2020.104270.
               [21]   BERNARD  S,  GILLARD  P,  FRASCATI  F.  Ignition  and  explosibility  of  aluminium  alloys  used  in  additive  layer
                    manufacturing [J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 888–895. DOI: 10.1016/j.jlp.2017.04.014.
               [22]   孙思衡, 孙艳, 贾存锋, 等. 增材制造用金属粉末爆炸敏感性研究 [J]. 粉末冶金技术, 2020, 38(4): 249–256. DOI: 10.19591/
                    j.cnki.cn11-1974/tf.2020010009.
                    SUN S H, SUN Y, JIA C F, et al. Study on the explosion sensitivity of metal powders used in additive manufacturing [J].
                    Powder Metallurgy Technology, 2020, 38(4): 249–256. DOI: 10.19591/j.cnki.cn11-1974/tf.2020010009.
               [23]   CASTELLANOS D, BAGARIA P, MASHUGA V C. Effect of particle size polydispersity on dust cloud minimum ignition
                    energy [J]. Powder Technology, 2020, 367: 782–787. DOI: 10.1016/j.powtec.2020.04.037.
               [24]   ASTM International. ASTM E1515-14 Standard test method for minimum explosible concentration of combustible dusts[S].
                    West Conshohocken: ASTM International, 2014: 1–6. DOI: 10.1520/E1515-14.
               [25]   赵江平, 王振成. 热爆炸理论在粉尘爆炸机理研究中的应用 [J]. 中国安全科学学报, 2004, 14(5): 80–83. DOI: 10.16265/
                    j.cnki.issn1003-3033.2004.05.020.
                    ZHAO J P, WANG Z C. Application of heat explosion theory to dust explosion mechanism research [J]. China Safety Science
                    Journal, 2004, 14(5): 80–83. DOI: 10.16265/j.cnki.issn1003-3033.2004.05.020.
               [26]   KUAI N S, HUANG W X, DU B, et al. Experiment-based investigations on the effect of ignition energy on dust explosion
                    behaviors [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4): 869–877. DOI: 10.1016/j.jlp.2013.03.005.
               [27]   KIM T S, LEE B T, LEE C R, et al. Microstructure of rapidly solidified Al–20Si alloy powders [J]. Materials Science and
                    Engineering: A, 2001, 304/305/306: 617–620. DOI: 10.1016/S0921-5093(00)01546-X.
               [28]   ZHOU Z Q, CHAI L J, ZHANG Y L, et al. Experimental study on oxidation and shell-breaking characteristics of individual
                    aluminum particles at high temperature [J]. Powder Technology, 2024, 431: 119087. DOI: 10.1016/j.powtec.2023.119087.
               [29]   DEAL B E, GROVE A S. General relationship for the thermal oxidation of silicon [J]. Journal of Applied Physics, 1965,
                    36(12): 3770–3778. DOI: 10.1063/1.1713945.
               [30]   曹卫国. 褐煤粉尘爆炸特性实验及机理研究 [D]. 南京: 南京理工大学, 2016. DOI: 10.7666/d.Y3192770.
                    CAO  W  G.  Experimental  and  mechanism  study  on  explosion  characteristic  of  lignite  coal  dust  [D].  Nanjing:  Nanjing
                    University of Science and Technology, 2016. DOI: 10.7666/d.Y3192770.
               [31]   BALLANTYNE A, MOSS J B. Fine wire thermocouple measurements of fluctuating temperature [J]. Combustion Science
                    and Technology, 1977, 17(1/2): 63–72. DOI: 10.1080/00102209708946813.
               [32]   MA X S, MENG X B, LI Z Y, et al. Study of the influence of melamine polyphosphate and aluminum hydroxide on the flame
                    propagation and explosion overpressure of aluminum magnesium alloy dust [J]. Journal of Loss Prevention in the Process
                    Industries, 2020, 68: 104291. DOI: 10.1016/j.jlp.2020.104291.
               [33]   ZHANG T J, ZHANG Z L, ZHU C C, et al. Inhibition effects of aluminum dust explosions by various kinds of ammonium
                    polyphosphate [J]. Journal of Loss Prevention in the Process Industries, 2023, 83: 105083. DOI: 10.1016/j.jlp.2023.105083.
                                                                                          (责任编辑    蔡国艳)




                                                         055401-11
   178   179   180   181   182   183   184