Page 18 - 《爆炸与冲击》2023年第2期
P. 18

第 43 卷              杨    帆,等: 煤油液滴直径对两相旋转爆轰发动机流场的影响                              第 2 期

               [27]  SARACOGLU, BAYINDIR H, et al. Unsteady performance of rotating detonation engines with different exhaust nozzles [J].
                    Journal of Propulsion and Power, 2017, 33(1): 1–10. DOI: 10.2514/1.B36164.
               [28]  KAILASANATH K. Liquid-fueled detonations in tubes [J]. Journal of Propulsion and Power, 2006, 22(6): 1261–1268. DOI:
                    10.2514/1.19624.
               [29]  SCHWER D A. Multi-dimensional simulations of liquid-fueled JP-10/oxygen detonations [C] // AIAA Propulsion and Energy
                    Forum. Indianapolis, USA: AIAA, 2019. DOI: 10.2514/6.2019-4042.
               [30]  BYKOVSKII F A, ZHDAN S A, VEDERNIKOV E F. Continuous spin detonation of a heterogeneous kerosene-air mixture
                    with addition of hydrogen [J]. Combustion, Explosion, and Shock Waves, 2016, 52(3): 371–373. DOI: 10.1134/S0010508216
                    030187.
               [31]  ZHENG  Q,  MENG  H  L,  WENG  C  S,  et  al.  Experimental  research  on  the  instability  propagation  characteristics  of  liquid
                    kerosene rotating detonation wave [J]. Defence Technology, 2020, 16(6): 1106–1115. DOI: 10.1016/j.dt.2020.06.028.
               [32]  LI J M, CHANG P H, LI L, et al. Investigation of injection strategy for liquid-fuel rotating detonation engine [C] // AIAA
                    Aerospace Sciences Meeting. Kissimmee, Florida, USA: AIAA, 2018. DOI: 10.2514/6.2018-0403.
               [33]  MENG Q Y, ZHAO M J, ZHENG H T, et al. Eulerian-Lagrangian modelling of rotating detonative combustion in partially
                    pre-vaporized n-heptane sprays with hydrogen addition [J]. Fuel, 2021, 290: 119808. DOI: 10.1016/j.fuel.2020.119808.
               [34]  徐高, 翁春生, 康楠, 等. 考虑燃料雾化的气液两相连续旋转爆轰数值模拟 [J]. 推进技术, 2022, 43(1): 200249. DOI:
                    10.13675/j.cnki.tjjs.200249.
                    XU G, WENG C S, KANG N, et al. Numerical simulation of gas-liquid two-phase continuous rotating detonation considering
                    fuel atomization [J]. Journal of Propulsion Technology, 2022, 43(1): 200249. DOI: 10.13675/j.cnki.tjjs.200249.
               [35]  FOX G E, DABORA E K. Breakup of liquid drops due to convective flow in shocked sprays [J]. Symposium (International)
                    on Combustion, 1973, 14(1): 1365–1373. DOI: 10.1016/S0082-0784(73)80122-5.
               [36]  KHOSLA S, CROCKER D S. CFD modeling of the atomization of plain liquid jets in cross flow for gas turbine applications [C] //
                    Proceedings of ASME Turbo Expo 2004: Power for Land, Sea, and Air. Vienna, Austria: American Society of Mechanical
                    Engineers, 2004. DOI: 10.1115/GT2004-54269.
               [37]  KHARE P, WANG S, YANG V. Modeling of finite-size droplets and particles in multiphase flows [J]. Chinese Journal of
                    Aeronautics, 2015, 28(4): 974–982. DOI: 10.1016/j.cja.2015.05.004.
               [38]  BROUMAND M, FAROKHI M, BIROUK M. Penetration height of a circular liquid jet in a subsonic gaseous crossflow: an
                    eulerian-lagrangian approach [C] // 54th AIAA Aerospace Sciences Meeting. San Diego, California, USA: AIAA, 2016. DOI:
                    10.2514/6.2016-1591.
               [39]  BHANDARKAR A, MANNA P, CHAKRABORTY D. Assessment of droplet breakup models in high-speed cross-flow [J].
                    Atomization and Sprays, 2017, 27(1): 61–79. DOI: 10.1615/atomizspr.2016015409.
               [40]  HU R, LI Q, LI C, LI C. Effects of an accompanied gas jet on transverse liquid injection in a supersonic crossflow [J]. Acta
                    Astronautica, 2019, 159: 440–451. DOI: 10.1016/j.actaastro.2019.01.040.
               [41]  BURCAT A, EIDELMAN A. Evolution of a detonation wave in a cloud of fuel droplets: part Ⅱ. influence of fuel droplets [J].
                    AIAA Journal, 1980, 18(10): 80–4099. DOI: 10.2514/3.7717.
               [42]  吴望一. 流体力学 [M]. 北京: 北京大学出版社, 2001.
               [43]  LIU  A  B,  MATHER  D,  REITZ  R  D.  Modeling  the  effects  of  drop  drag  and  breakup  on  fuel  sprays:  930072  [R].  SAE
                    Transactions, Detroit, USA, 1993.
               [44]  O’ROURKE P J, AMSDEN A A. The TAB method for numerical calculation of spray droplet breakup [R]. Los Alamos, NM,
                    USA: Los Alamos National Laboratory, 1987.
               [45]  STEPHEN R T, DANIEL C H. An introduction to combustion: concepts and applications [M]. New York, USA: McGraw
                    Hill, 2000.
               [46]  GUO K K, NIE W S, CAI H H. Numerical simulation of damping capacity between injector-formed baffle and normal blade
                    baffle in a kero/lox liquid rocket engine [C] // Proceedings of the Advances in Materials, Machinery, Electical Engineering
                    (AMMEE 2017). Prais, France: Atlantis Press, 2017: 576–585. DOI: 10.2991/ammee-17.2017.110.
               [47]  KUO K K Y. Principles of combustion [M]. New York, USA: John Wiley and Sons, 1986.
                                                                                          (责任编辑    蔡国艳)




                                                         022101-15
   13   14   15   16   17   18   19   20   21   22   23