Page 16 - 《爆炸与冲击》2023年第2期
P. 16
第 43 卷 杨 帆,等: 煤油液滴直径对两相旋转爆轰发动机流场的影响 第 2 期
3 结 论
采用单步总包反应机理,考虑液滴的雾化破碎、碰撞黏合过程,采用初始均匀直径假设,在直径
1~70 µm 工况范围内计算了二维 RDE 的气液两相流流场,得出以下主要结论。
(1) 不同初始液滴直径工况下,旋转爆轰燃烧室内均形成了稳定传播的爆轰波,由于波前液滴与煤
油蒸气分布不均匀,爆轰波呈现曲面分布。仅当初始直径减小至 1 µm 时,爆轰波才变得更平整,呈现出
气相爆轰特性。
(2) 初始液滴越小,越具有保持稳定的趋势,在爆轰波周期内受高温空气作用,此时主要经历蒸发过
程。而初始液滴越大,越易破碎成小液滴,此时受空气破碎影响较大。
(3) 对于相同的燃料质量流量,在不同初始液滴直径工况下,爆轰波前燃料的蒸发效率越高,爆轰波
速度越大。初始直径为 10~70 µm 工况下,随着初始液滴直径的增大,爆轰波速度先升高后降低,爆轰
波速度极大值出现在初始液滴直径为 20 µm 的工况。
参考文献:
[1] TEASLEY T, WILLIAMS B, LARKEY A, et al. A review towards the design optimization of high-performance additively
manufactured rotating detonation rocket engine injectors [C] // AIAA Propulsion and Energy Forum. Virtual Event: AIAA,
2021. DOI: 10.2514/6.2021-3655.
[2] 王顺利, 吴云, 金迪, 等. 不同当量比下喷管对旋转爆震特性的影响研究 [J]. 爆炸与冲击, 2020, 40(10): 102102. DOI:
10.11883/bzycj-2019-0481.
WANG S L, WU Y, JIN D, et al. Effects of nozzles on performance of rotating detonation at different equivalence ratios [J].
Explosion and Shock Waves, 2020, 40(10): 102102. DOI: 10.11883/bzycj-2019-0481.
[3] RAJ P, MEADOWS J. A method for modeling dynamic injector response in a rotating detonation combustor (RDC) [C] //
AIAA Propulsion and Energy Forum. Virtual Event: AIAA, 2021. DOI:10.2514/6.2021-3647.
[4] 葛高杨, 马元, 侯世卓, 等. 当量比对汽油燃料两相旋转爆轰发动机工作特性影响实验研究 [J]. 爆炸与冲击, 2021, 41(11):
112102. DOI: 10.11883/bzycj-2020-0465.
GE G Y, MA Y, HOU S Z, et al. Experimental study on the effect of equivalent ratio on working characteristics of gasoline
fuel two-phase rotating detonation engine [J]. Explosion and Shock Waves, 2021, 41(11): 112102. DOI: 10.11883/bzycj-2020-
0465.
[5] 李宝星, 许桂阳, 翁春生, 等. 燃烧室宽度对液态燃料旋转爆轰发动机影响实验研究 [J]. 推进技术, 2021, 42(2): 372–381.
DOI: 10.13675/j.cnki.tjjs.190472.
LI B X, XU G Y, WENG C S, et al. Experimental investigation for effects of chamber width on rotating detonation engine
with liquid fuel [J]. Journal of Propulsion Technology, 2021, 42(2): 372–381. DOI: 10.13675/j.cnki.tjjs.190472.
[6] PAXSON D E, FOTIA M L, HOKE J, et al. Comparison of numerically simulated and experimentally measured performance
of a rotating detonation engine [C] // 53rd AIAA Aerospace Sciences Meeting. Kissmmee, Florida, USA: AIAA, 2015. DOI:
10.2514/6.2015-1101.
[7] ZHOU R, WU D, WANG J P. Progress of continuously rotating detonation engines [J]. Chinese Journal of Aeronautics, 2016,
29(1): 15–29. DOI: 10.1016/j.cja.2015.12.006.
[8] STECHMANN D, LIM D, HEISTER S D. Survey of rotating detonation wave combustor technology and potential rocket
vehicle applications [C] // 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cleveland, OH, USA: AIAA, 2014.
DOI: 10.2514/6.2014-3902.
[9] WANG Y H, QIAO W Y, LE J L. Combustion characteristics in rotating detonation engines [J]. International Journal of
Aerospace Engineering, 2021: 8839967. DOI: 10.1155/2021/8839967.
[10] SUCHOCKI J A, YU S J, HOKE J L, et al. Rotating detonation engine operation [C] // 50th AIAA Aerospace Sciences
Meeting Including the New Horizons Forum and Aerospace Exposition. Nashville, Tennessee, USA: AIAA, 2012. DOI:
10.2514/6.2012-119.
022101-13