Page 129 - 《爆炸与冲击》2023年第2期
P. 129

第 43 卷                     李嘉皓,等: 液压膨胀环恒应变率加载技术                                  第 2 期

                                            2.5

                                            2.0
                                           Strain rate/(10 3  s −1 )  1.5



                                            1.0

                                            0.5

                                             0      20    40    60    80   100
                                                            Time/μs
                                                  图 15    实验中的应变率曲线
                                              Fig. 15    Strain rate obtained in experiment

               4    结 论

                   发展了一种能实现膨胀环近似恒定应变率膨胀的液压加载技术,利用液体体积近似不可压缩的特
               性,通过液压腔截面积的大比例缩小,将持续的水流轴向加载转化为膨胀环稳定的径向膨胀。假定金属
               圆环的膨胀应变率为线性增长阶段和稳定阶段,从理论上给出了实现恒应变率膨胀所需的水流加载曲
               线的近似表达式,对应曲线为双线性加载曲线。
                   通过流固耦合有限元模拟,再现了                1060-O  铝环的液压膨胀碎裂过程,在不同的应变率下,理论给出
               的水流加载曲线均能近似实现膨胀环的恒定应变率加载。但在较高应变率加载时,忽略应变率线性增
               长阶段的应变,将产生较大偏差,模拟得到的应变率较理论值偏小,且应变率越高,误差越大。液压膨胀
               环实验进一步验证了恒应变率加载技术的可行性。

               参考文献:

               [1]  JOHNSON  P  C,  STEIN  B  A,  DAVH  R  S.  Measurement  of  dynamic  plastic  flow  properties  under  uniform  stress  [C]  //
                    Symposium on the Dynamic Behavior of Materials. Albuquerque, USA: American Society for Testing and Materials, 1963:
                    195–198. DOI: 10.1520/STP42030S.
               [2]  NIORDSON F I. A unit for testing materials at high strain rates [J]. Experimental Mechanics, 1965, 5(1): 29–32. DOI: 10.1007/
                    BF02320901.
               [3]  WARNES R H, DUFFEY T A, KARPP R R, et al. Improved technique for determining dynamic material properties using the
                    expanding ring [C] // International Conference on the Meteallurgical Effects of High Strain Rate Deformation and Fabrication.
                    Albuquerque, NM, USA, 1980.
               [4]  GRADY D E, BENSON D A. Fragmentation of metal rings by electromagnetic loading [J]. Experimental Mechanics, 1983,
                    23(4): 393–400. DOI: 10.1007/BF02330054.
               [5]  GOURDIN W H. Analysis and assessment of electromagnetic ring expansion as a high-strain-rate test [J]. Journal Applied
                    Physics, 1989, 65: 411–422. DOI: 10.1063/1.343121.
               [6]  GOURDIN W H, WEINLAND S L, BOLING R M. Development of the electromagnetically launched expanding ring as a
                    high-strain-rate test technique [J]. Review of Scientific Instruments, 1989, 60(3): 427–432. DOI: 10.1063/1.1140395.
               [7]  桂毓林, 孙承纬, 李强, 等. 实现金属环动态拉伸的电磁加载技术研究 [J]. 爆炸与冲击, 2006, 26(6): 481–485. DOI:
                    10.11883/1001-1455(2006)06-0481-05.
                    GUI Y L, SUN C W, LI Q, et al. Experimental studies on dynamic tension of metal ring by electromagnetic loading [J].
                    Explosion and Shock Waves, 2006, 26(6): 481–485. DOI: 10.11883/1001-1455(2006)06-0481-05.
               [8]  桂毓林. 电磁加载下金属膨胀环的动态断裂与碎裂研究 [D]. 四川绵阳: 中国工程物理研究院, 2007.
                    GUI Y L. The studies on the dynamic fracture and fragmentation of metal freely expanding ring driven by electromagnetically
                    loading [D]. Mianyang, Sichuan, China: China Academy of Engineering Physics, 2007.


                                                         024101-8
   124   125   126   127   128   129   130   131   132   133   134