Page 132 - 《爆炸与冲击》2023年第2期
P. 132
第 43 卷 陈源捷,等: 基于ESGA遗传算法的水射流自驱旋转喷头优化设计 第 2 期
high-pressure water jet is developed to quantify the evenness of impinging energy distribution on target surface perpendicular
to the sprayer movement path. Aiming at enhancing the evenness of impinging energy distribution and improving
hydrodynamic performance, the layout of self-driven rotary sprayer is optimized via the GA and ESGA algorithms. It is found
that the evenness of the impinging energy distribution related to the self-driven rotary sprayer with a rod-like shape, which is
optimized by the ESGA algorithm, is improved by 47.2% compared with that of the original layout scheme. The ESGA
algorithm provides faster convergence speed and higher convergence precision, superior to the conventional GA. The
experimental test results indicated that the rust-removing efficiency of self-driven rotary sprayer, optimized by the ESGA
algorithm, is increased by 42.0% when compared with original layout scheme. It is worth noting that the improved ESGA
algorithm optimization approach is feasible, and some sprayer layouts with better hydrodynamic performance can be easily
achieved in fewer convergence iterations, providing adequate theoretical basis and application support for the layout
optimization.
Keywords: rust removal of ship hull; rotary sprayer; genetic algorithm; sweep impinging; layout optimization
船舶由于长期浸泡在高盐海水中,船体金属表面易锈蚀也易附着海洋生物,极大地增加了船舶航行
的阻力,可使船舶降速约 10%,油耗增加约 40% ,大大降低了船舶的航行效率和使用寿命,因此船舶须
[1]
定期停靠船坞对船体锈层以及海洋附着物进行清理,如图 1 所示。船舶除锈清洗是船舶维修过程的重
要环节,目前船企主要采用露天喷砂进行除锈,不仅效率低,而且易对环境造成污染,难以实现绿色可持
[2]
续发展 。因此研发高效、绿色、低耗、环保的高压水射流除锈清洁技术显得尤为重要。
超高压水射流自驱旋转型喷头以其清洗效率高、效果好等优势,近年来逐渐成为船壁绿色除锈领域
[3]
的主角,得到各船企的广泛认可 ,如图 2 所示。对于超高压水射流成套装备,大多专注于作为喷头载体
的机器人平台的设计、控制和自动化提效等方面的研发,而重要部件——喷头装置的水动力提效研究稍
显滞后。目前,国内采用的喷头装置,其布局基本是沿用国外同类产品的设计参数或结合现场经验确
定,基于定量化理论分析进而确定喷头空间布局,以提高其水动力性能的基础性研究明显不足。
图 1 船体锈蚀与海洋附着物 图 2 船壁面高压水射流除锈
Fig. 1 Hull corrosion and marine attachments Fig. 2 Rust removal on ship wall using high-pressure water jet
人工智能在水动力优化设计领域应用潜力大。因人工智能技术具有计算速度快、精度高、人工干
预少等特点,在优化设计领域应用广泛。Gero 等 [4] 基于精英非支配排序策略的遗传算法,分析了流化装
置的产率最大、空气流速最小的全局性问题。Yildizeli 等 [5] 采用快速精英遗传算法对撞击射流阵列的气
[6]
动非接触式悬浮系统的悬浮能力和能耗进行了全局优化。AlHamaydeh 等 提出一种基于域修剪的改进
遗传算法对海上风机支撑结构进行优化设计,获得了最优的支撑桁架结构形式。Fu 等 [7] 基于快速精英
非支配排序遗传算法的形状多目标优化法,完成了低能耗型水下潜航器外形的水动力性能优化。
在喷嘴优化设计方面,许多学者使用人工智能方法开展过一些有意义的尝试。Zain 等 [8] 采用遗传
算法与模拟退火算法(simulated annealing,SA)相结合的方法对喷嘴水射流参数进行优化。Srinivasu 等 [9]
024201-2