Page 68 - 《软件学报》2020年第9期
P. 68

张亮  等:扫地机器人增强位姿融合的 Cartographer 算法及系统实现                                          2689


                         Table 3    Match scores with or without odometer data processing collision
                                  表 3   有无里程计数据处理发生碰撞的匹配分数
                                                        Min       Max      Mean
                                有里程计数据处理               0.651     0.867     0.723
                                无里程计数据处理               0.650     0.698     0.676

         4    总   结
             本文主要对当前的激光 SLAM 算法进行了分析和研究,在 Cartographer 的基础上设计了基于位姿增量的多
         传感器位姿融合算法,在 Player 平台设计实现了基于增强 Cartographer 算法的 SLAM 系统,并在实际场景生成
         2D 栅格地图.

         5    展   望

             提高扫地机器人智能化,是未来服务机器人应用的一个重要方向,之后的研究还可以从以下几个方面进
         行.(1)  目前使用的传感器无法探测语义信息             [27] ,从而限制机器人的智能化.将来可以研究加入视觉传感器,在提
         供更精确位姿的同时,能够与深度学习结合,在不同场景使用不同的清扫方式,增强机器人的智能化程度;(2)  目
         前,在扫地机器人上实现的是二维环境下的 SLAM 算法,在今后的实际发展中,三维环境的 SLAM 算法具有更广
         泛的应用场景;(3)究在复杂场景对动态物体的检测以及进行轨迹的预测,实现规避,让机器人更安全、更方便.

         References:
          [1]    Leonard JJ, Durrant-Whyte HF. Mobile robot localization by tracking geometric beacons. IEEE Robotics and Automation, 1991,
             7(3):376−382.
          [2]    Liang Z, Peiyi S, Guangming Z, et al. A fast robot identification and mapping algorithm based on kinect sensor. Sensors, 2015,
             15(8):19937−19967.
          [3]    Zhang L, Shen P, Ding J, et al. An improved RGB-D SLAM algorithm based on Kinect sensor. In: Proc. of the IEEE Int’l Conf. on
             Advanced Intelligent Mechatronics. IEEE, 2015.
          [4]    Nister D, Narodisky O, Bergen J. Visual odometry for ground vehicle applications. Journal of Field Robotics, 2006,23(1):3−20.
          [5]    Alin A, Butz MV. Improved tracking and behavior anticipation by combining street map information with bayesian-filtering. In:
             Proc. of the Int’l IEEE Conf. on Intelligent Transportation Systems. IEEE, 2014.
          [6]    Grisetti G, KuMmerle R, Stachniss C, et al. A tutorial on graph-based SLAM. Intelligent Transportation Systems Magazine IEEE,
             2010,2(4):31−43.
          [7]    Ho KL,  Newman  P. Loop  closure detection in SLAM by  combining visual  and spatial  appearance.  Robotics  and Autonomous
             Systems, 2006,54(9):740−749.
          [8]    Hess W, Kohler D, Rapp H, et al. Real-time loop closure in 2D LIDAR SLAM. In: Proc. of the 2016 IEEE Int’l Conf. on Robotics
             and Automation (ICRA). IEEE, 2016.
          [9]    Isbell JR. Six theorems  about injective  metric  spaces. Commentarii Mathematici Helvetici, 1964,39:65−76. [doi: 10.1007/
             BF02566944]
         [10]    Lee YC, Yu W, Lim JH, et al. Sonar grid map based localization for autonomous mobile robots. In: Proc. of the 2008 IEEE/ASME
             Int’l Conf. on Mechtronic and Embedded Systems and Applicationbs. 2008. 558−563.
         [11]    Lu F, Milios E. Globally consistent range scan alignment for environment mapping. Autonomous Robots, 1997,4(4):333−349.
         [12]    Martín  F, Triebel R,  Moreno L,  Siegwart R.  Two  different tools  for  three-dimensional mapping: DE-based  scan matching and
             feature-based loop detection. Robotica, 2014,32(1):19−41.
         [13]    Agarwal S, Mierle K, et al. Ceres solver. http://ceres-solver.org
         [14]    Julier S,  Uhlmann JK.  A new  extension of the  Kalman filter  to nonlinear systems. In: Proc. of  the Int’l Symp. on
             Aerospace/Defense Sensing, Simul. and Controls. Signal Processing, Sensor Fusion, and Target Recognition VI. 3. 1997. 182.
         [15]    Konolige K, Grisetti G, Kümmerle R, et al. Sparse pose adjustment for 2D mapping. In: Proc. of the IROS. 2010.
         [16]    Land AH, Doig AG. An automatic method of solving discrete programming problems. Econometrica, 1960,28(3):497−520.
   63   64   65   66   67   68   69   70   71   72   73