Page 71 - 《摩擦学学报》2021年第6期
P. 71
856 摩 擦 学 学 报 第 41 卷
参 考 文 献 synthesis of high aspect ratio TiB fiber bundle reinforced titanium
matrix composite coating[J]. Optics & Laser Technology, 2019, 115:
[ 1 ] Kuo D H, Abdullah H, Gultom N S, et al. Ag-decorated MoS x
364–373. doi: 10.1016/j.optlastec.2019.02.047.
laminar-film electrocatalyst made with simple and scalable
[12] Zhao Shuzhen, Zhou Shengfeng, Xie Min, et al. Phase separation
magnetron sputtering technique for hydrogen evolution: a defect
and enhanced wear resistance of Cu 88 Fe12 immiscible coating
model to explain the enhanced electron transport[J]. ACS Applied
prepared by laser cladding[J]. Journal of Materials Research and
Materials & Interfaces, 2020, 12(31): 35011–35021. doi: 10.1021/
Technology, 2019, 8(2): 2001–2010. doi: 10.1016/j.jmrt.2018.
acsami.0c09358.
12.018.
[ 2 ] Gao Bo, Du Xiaoye, Li Yanhuai, et al. Wettability transition of
[13] Zhou Shengfeng, Dai Xiaoqin, Zheng Haizhong. Microstructure and
Ni3B4-doped MoS 2 for hydrogen evolution reaction by magnetron
wear resistance of Fe-based WC coating by multi-track overlapping
sputtering[J]. Applied Surface Science, 2020, 510: 145368. doi: 10.
laser induction hybrid rapid cladding[J]. Optics & Laser
1016/j.apsusc.2020.145368.
Technology, 2012, 44(1): 190–197. doi: 10.1016/j.optlastec.2011.
[ 3 ] Xie Yuanhua, Wang Pengyang, Deng Wenyu, et al. Corrosion
06.017.
resistance of TiN/Al 2 O 3 multilayer films deposited on NdFeB
[14] Gu D D, Meiners W. Microstructure characteristics and formation
surface by magnetron sputtering[J]. Journal of New Materials for
mechanisms of in situ WC cemented carbide based hardmetals
Electrochemical Systems, 2020, 23(1): 20–24. doi: 10.14447/jnmes.
prepared by Selective Laser Melting[J]. Materials Science and
v23i1.a10.
Engineering: A, 2010, 527(29 –30): 29–30. doi: 10.1016/j.msea.
[ 4 ] MacDonald D, Fernández R, Delloro F, et al. Cold spraying of
2010.08.075.
Armstrong process titanium powder for additive manufacturing[J].
[15] Yao Yongqiang, Lin Chen, Shen Jingyi, et al. Effect of vacuum
Journal of Thermal Spray Technology, 2017, 26(4): 598–609. doi:
environment and substrate preheating on microstructure and
10.1007/s11666-016-0489-2.
properties of laser cladding WC reinforced nickel-based alloy
[ 5 ] Movassagh-Alanagh F, Abdollah-Zadeh A, Aliofkhazraei M, et al. coating[J]. Materials for Mechanical Engineering, 2020, 44(5):
Improving the wear and corrosion resistance of Ti-6Al-4V alloy by 49–53 (in Chinese) [姚永强, 林晨, 申井义, 等. 真空环境与基体预
deposition of TiSiN nanocomposite coating with pulsed-DC 热对激光熔覆WC增强镍基合金涂层组织和性能的影响[J]. 机械
PACVD[J]. Wear, 2017, 390 –391: 93 –103. doi: 10.1016/j.wear.
工程材料, 2020, 44(5): 49–53]. doi: 10.11973/jxgccl202005010.
2017.07.009. [16] Wang Kaiming, Du Dong, Liu Guan, et al. Microstructure and
[ 6 ] Marin E, Offoiach R, Regis M, et al. Diffusive thermal treatments
properties of WC reinforced Ni-based composite coatings with Y 2 O 3
combined with PVD coatings for tribological protection of titanium addition on titanium alloy by laser cladding[J]. Science and
alloys[J]. Materials & Design, 2016, 89: 314–322. doi: 10.1016/j. Technology of Welding and Joining, 2019, 24(5): 517–524. doi: 10.
matdes.2015.10.011. 1080/13621718.2019.1580441.
[ 7 ] Lei Jianbo, Shi Chuan, Zhou Shengfeng, et al. Enhanced corrosion [17] Farayibi P K, Folkes J, Clare A, et al. Cladding of pre-blended Ti-
and wear resistance properties of carbon fiber reinforced Ni-based 6Al-4V and WC powder for wear resistant applications[J]. Surface
composite coating by laser cladding[J]. Surface and Coatings and Coatings Technology, 2011, 206((2-3)): 372–377. doi: 10.1016/
Technology, 2018, 334: 274–285. doi: 10.1016/j.surfcoat.2017. j.surfcoat.2011.07.033.
11.051. [18] Li Jianfeng, Li Shuai, Zhu Zhencai, et al. Fabrication and
[ 8 ] Yao Jianhua, Zhang Jie, Wu Guolong, et al. Microstructure and wear characterization of NbSe 2 /Ag encapsulation and tribological
resistance of laser cladded composite coatings prepared from pre- properties of its correlated copper-based composites[J]. Tribology
alloyed WC-NiCrMo powder with different laser spots[J]. Optics & Letters, 2019, 67(3): 1–16. doi: 10.1007/s11249-019-1191-6.
Laser Technology, 2018, 101: 520–530. doi: 10.1016/j.optlastec. [19] Cai Yangchuan, Luo Zhen, Feng Mengnan, et al. The effect of
2017.12.007. TiC/Al 2 O 3 composite ceramic reinforcement on tribological
[ 9 ] Liu Yanan, Sun Ronglu, Niu Wei, et al. Effects of CeO 2 on behavior of laser cladding Ni60 alloys coatings[J]. Surface and
microstructure and properties of TiC/Ti 2 Ni reinforced Ti-based laser Coatings Technology, 2016, 291: 222–229. doi: 10.1016/j.surfcoat.
cladding composite coatings[J]. Optics and Lasers in Engineering, 2016.02.033.
2019, 120: 84–94. doi: 10.1016/j.optlaseng.2019.03.001. [20] Lei Yiwen, Sun Ronglu, Tang Ying, et al. Microstructure and phase
[10] Zhang H, Zhang C H, Wang Q, et al. Effect of Ni content on transformations in laser clad Cr x S y /Ni coating on H13 steel[J].
stainless steel fabricated by laser melting deposition[J]. Optics & Optics and Lasers in Engineering, 2015, 66: 181–186. doi: 10.1016/
Laser Technology, 2018, 101: 363–371. doi: 10.1016/j.optlastec. j.optlaseng.2014.09.006.
2017.11.032. [21] Zhang Limin, Sun Dongbai, Yu Hongying. Effect of niobium on the
[11] Lin Yinghua, Jiang Changchun, Lin Zhenheng, et al. Laser in-situ microstructure and wear resistance of iron-based alloy coating