Page 73 - 《摩擦学学报》2021年第6期
P. 73

第 41 卷     第 6 期                        摩  擦  学  学  报                                  Vol 41   No 6
            2021  年 11  月                                Tribology                                   Nov, 2021

            DOI: 10.16078/j.tribology.2020188



                     聚合物刷水润滑条件下水膜厚度和摩擦学

                                           行为的相关性研究




                                   李金鹏 , 杨淑燕 , 吴  杨 , 栗心明 , 郭  峰 , 周  峰              2*
                                          1
                                                                     1
                                                                             1
                                                   1,2*
                                                            2
                                      (1. 青岛理工大学 机械与汽车工程学院, 山东 青岛266520;
                              2. 中国科学院兰州化学物理研究所 固体润滑国家重点实验室, 甘肃 兰州730000)
                摘   要: 利用表面引发原子转移自由基聚合技术(SI-ARTP)在钢球和玻璃盘摩擦副表面分别接枝亲水性聚合物刷-
                聚甲基丙烯酸-3-磺酸丙酯钾盐(PSPMA),去离子水作为润滑剂,在球-盘式摩擦试验机和纳米级薄膜厚度测量装置
                上开展了其宏观摩擦学性能研究,探讨了流体动压效应介入下的聚合物刷水润滑机理. 利用光干涉技术观察了低卷
                吸速度下(4 mm/s)接触区域水膜分布情况,发现滚道两侧水膜的形状由初始状态的圆形随着时间逐渐沿着卷吸方
                向分布,证实了聚合物刷通过不断捕获周围的水分子形成了1层稳定的水膜;通过控制卷吸速度从1 mm/s连续增加
                512 mm/s实现了润滑状态的转变,低卷吸速度时处于薄膜润滑状态,膜厚不依赖于速度且稳定在35 nm左右,接触
                区内有效水膜的建立归功于聚合物刷的水合效应;当速度大于32 mm/s时处于弹流润滑状态,膜厚的测量值高于等
                黏弹膜厚公式的预测值(2~12 nm)和水合效应促成的膜厚值(约35 nm)之和,这意味着在流体动压润滑作用下聚合物
                刷表现出了优异的润滑增强作用, 是水合效应和流体动压效应协同作用的结果.
                关键词: 聚合物刷PSPMA; 水合润滑; 流体动压润滑; 成膜性能; 润滑增强效应
                中图分类号: TH117.2                  文献标志码: A                   文章编号: 1004-0595(2021)06–0858–12



                   Correlation between Water Film Thickness and Tribological
                         Behavior of Polymer Brush in Aqueous Lubrication


                                  1              1,2*       2           1          1           2*
                         LI Jinpeng , YANG Shuyan , WU Yang , LI Xinming , GUO Feng , ZHOU Feng

                            (1. School of Mechanical & Automotive Engineering, Qingdao Technological University,
                                                Shandong Qingdao 266520, China
                   2. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences,
                                                 Gansu Lanzhou 730000, China)
                 Abstract: Research on macroscopic tribological performance of polymer brush was conducted on friction tester and
                 nanoscale film thickness measuring device with ball-disc contact pairs, where steel balls and glass discs were grafted by
                 hydrophilic polymer brush-polymethacrylic acid-3-sulfonic acid propyl potassium salt (PSPMA) respectively using
                 surface-initiated atom radical transfer polymerization technology (SI-ARTP) and deionized water as a lubricant, the
                 aqueous lubrication mechanism of polymer brush was explored under the intervention of hydrodynamic effect. Optical
                 interferometry technique was used to observe actual distribution of water film in the contact area at low entrainment speed
                 (4 mm/s), it was found that the shape of water film adjacent to both sides of raceway changed from a circular shape in
                 the initial state to a distribution along entrainment speed direction with time, which confirmed that polymer brush


            Received 3 September 2020, revised 22 January 2021, accepted 26 January 2021, available online 28 November 2021.
            *Corresponding author. E-mail: yangshuyan@qut.edu.cn, Tel:+86-532-68052755; E-mail: zhouf@licp.cas.cn, Tel:+86-931-4968466.
            The  project  was  supported  by  the  National  Natural  Science  Foundation  of  China  (51775287,  22032006)  and  the  Key  Research
            Program of the Chinese Academy of Sciences (XDPB24).
            国家自然科学基金项目(51775287, 22032006)和中国科学院B类先导科技专项培育项目(XDPB24)资助.
   68   69   70   71   72   73   74   75   76   77   78