Page 189 - 《摩擦学学报》2021年第6期
P. 189

第 41 卷     第 6 期                        摩  擦  学  学  报                                  Vol 41   No 6
            2021  年 11  月                                Tribology                                   Nov, 2021

            DOI: 10.16078/j.tribology.2020149



                                双尖槽干气密封特性对比研究




                                             1*
                                                       2
                                                                         2
                                                                2
                                      王和顺 , 刘小明 , 张车宁 , 王泽平 , 朱维兵                 1
                                           (1. 西华大学 机械工程学院, 四川 成都 610039;
                                           2. 中密控股股份有限公司, 四川 成都 610046)
                摘   要: 提出一种新型双尖槽端面密封,具体由两个开槽深度不同、径向长度相同的螺旋槽及1个圆弧槽组合而成.
                建立了该双尖槽与燕尾螺旋槽端面密封的数学模型,并运用有限差分法进行了数值计算. 结果表明:在小间隙区
                域,双尖槽具有更大的开启力、泄漏量、刚度及刚漏比,且间隙越小,双尖槽较燕尾螺旋槽其端面的开启力、刚度及
                刚漏比差值越大;在间隙(h 0 )小于3.0 μm区域,双尖槽开启力整体大于燕尾螺旋槽;在间隙小于6.0 μm区域,双尖槽

                气膜刚度整体大于燕尾螺旋槽;在间隙小于6.8 μm区域,双尖槽刚漏比整体大于燕尾螺旋槽;特别是在间隙为3.0~5.0 μm
                区域,双尖槽较10 μm和8 μm槽深燕尾螺旋槽刚度有显著增大,较5 μm槽深燕尾螺旋槽增幅也达到6%左右;在间隙
                约小于3.0 μm区域,双尖槽较燕尾螺旋槽的泄漏量值虽有所增大,但其值没超过泄漏量的设计值,密封基本性能指
                标合格. 故双尖槽在泄漏量不超标的情况下,具有更优的综合性能.
                关键词: 密封; 机械密封; 干气密封; 双尖槽; 螺旋槽; 数值计算
                中图分类号: TH117.1                  文献标志码: A                   文章编号: 1004-0595(2021)06–0974–09



                    A Comparative Research on the Characteristics of Dry Gas
                                     Seal with Double Pointed Grooves


                                     1*             2               2              2             1
                        WANG Heshun , LIU Xiaoming , ZHANG Chening , WANG Zeping , ZHU Weibing

                            (1. School of Mechanical Engineering, Xihua University, Sichuan Chengdu 610039, China
                                     2. Sichuan Nikki Seal Co Ltd, Sichuan Chengdu 610046, China)
                 Abstract: A new type of Double Pointed Groove (DPG) seal face was proposed, which was composed of two spiral
                 grooves with different groove depth and the same radial length and one circular arc groove. The mathematical model of
                 the DPG and the Dovetail Spiral Groove (DSG) face seal was established, and the numerical calculation was carried out
                 by using the finite difference method. In the small clearance area, the DPG had larger opening force, leakage, stiffness
                 and ratio of stiffness to leakage, and the smaller the clearance, the greater the difference. When h 0 <3.0 μm, the DPG had
                 larger opening force; when h 0 <6.0 μm, the film stiffness of the DPG was larger than that of the DSG; when h 0 <6.8 μm,
                 the DPG had larger stiffness leakage ratio. In the area with a clearance of 3.0~5.0 μm, the stiffness of DPG had a
                 significant increase compared to the DSG with the depth of 10 μm and 8 μm. And the relative change (RC) was about
                 6% compared with the DSG of 5 μm. When h 0 <3.0 μm, the leakage of the DPG was higher than that of the DSG, but the
                 leakage value did not exceed the design value, and the basic sealing performance index was qualified. Therefore, the
                 DPG had better comprehensive performance under the condition that the leakage did not exceed the standard.


            Received 17 July 2020, revised 27 September 2020, accepted 7 December 2020, available online 28 November 2021.
            *Corresponding author. E-mail: wangheshun@mail.xhu.edu.cn, Tel: +86-18030802010.
            The project was supported by the key R&D projects of Science and Technology Department of Sichuan Province (2019YFG0351),
            the National Natural Science Foundation of China (52079118) and the Key Laboratory of Fluid and Power Machinery, Ministry of
            Education.
            四川省科技厅重点研发项目(2019YFG0351),国家自然科学基金面上项目(52079118)和流体及动力机械教育部重点实验室
            资助.
   184   185   186   187   188   189   190   191   192   193   194