Page 115 - 《摩擦学学报》2021年第6期
P. 115
900 摩 擦 学 学 报 第 41 卷
( ) ( ) behaviors of polymeric materials[J]. Acta Polymerica Sinica,
4qF n 4qF n dw
d /dυ −2w
dH πw 2 π dυ −4qF n w 3 2018(10): 1262–1278 (in Chinese) [徐杨, 李顿, 沈佳斌, 等. 高分子
= ( ) = = ( )
dψ υ 2 2 2 dw dυ υ 材料刮擦行为研究进展[J]. 高分子学报, 2018(10): 1262–1278].
d /dυ 2υw −2υ w πυ −
w 2 dυ dw w doi: 10.11777/j.issn1000-3304.2018.18089.
w 4 [ 5 ] Zhang Dong, Sun Yuan, Gao Chenghui, et al. Measurement of
(10)
fracture toughness of copper via constant-load microscratch with a
3 结论 spherical indenter[J]. Wear, 2020, 444–445: 203158. doi: 10.1016/j.
wear.2019.203158.
a. 单次划痕中,载荷增加时,压入深度增加,压头 [ 6 ] Li Yang, Liu Zhongli, Luo Jianbin, et al. Microstructure, mechanical
克服的犁耕阻力增加,导致犁耕摩擦系数线性增加; and adhesive properties of CrN/CrTiAlSiN/WCrTiAlN multilayer
coatings deposited on nitrided AISI 4140 steel[J]. Materials
速度增加时,压入深度、犁耕和黏着摩擦系数随之减
Characterization, 2019, 147: 353–364. doi: 10.1016/j.matchar.2018.
小,而摩擦系数先增加后减小主要归因于黏弹性摩擦
11.017.
系数的变化;残余深度随载荷增加或速度降低而增 [ 7 ] Li Xue. Study of the material removal mechanism of glass-ceramics
加,弹性恢复率随载荷增加或速度降低而减小. based on consecutive incremental loading in ductile-regime
b. 第15次磨损情况比单次划痕严重,各参数变化 grinding[J]. Nanotechnology and Precision Engineering, 2020, 3(2):
与单次基本一致,不同的是第15次的划痕表面因应变 88–95. doi: 10.1016/j.npe.2020.02.002.
[ 8 ] Zhang Jianwei, Jiang Han, Jiang Chengkai, et al. In-situ observation
硬化现象使其黏着和黏弹性摩擦系数之和随载荷增
of temperature rise during scratch testing of poly
加而减小.
(methylmethacrylate) and polycarbonate[J]. Tribology International,
c. 第15次划痕中,载荷增加时,残余与几何划痕 2016, 95: 1–4. doi: 10.1016/j.triboint.2015.10.037.
宽度线性增加,残余划痕硬度降低,而几何划痕硬度 [ 9 ] Fidan S, Özgür Bora M, Çoban O, et al. The scratch behavior of
则随应变增加所产生的加工硬化而增加. 随着速度增 accelerated aged carbon fiber-reinforced epoxy matrix composite[J].
加,残余和几何划痕宽度非线性减小,且残余和几何 Polymer Composites, 2016, 37(12): 3527–3534. doi: 10.1002/pc.
23552.
划痕硬度均随应变率平方的增加而增加,较大速度下
[10] Liu Ming, Li Shuo, Gao Chenghui. Fracture toughness measurement
趋于稳定.
by micro-scratch tests with conical indenter[J]. Tribology, 2019,
d. 第15次划痕中,低载荷和速度下,随着载荷增 39(5): 556–564 (in Chinese) [刘明, 李烁, 高诚辉. 利用圆锥压头微
加或速度减小,应变率均减小,导致材料抵抗塑性变 米划痕测试材料断裂韧性[J]. 摩擦学学报, 2019, 39(5): 556–564].
形的能力变差,残余划痕硬度降低. doi: 10.16078/j.tribology.2019021.
e. 多程单向滑动磨损测试中,残余划痕宽度、摩 [11] Vega-Morón R C, Rodríguez-Castro G A, Jiménez-Tinoco L F, et al.
Multipass scratch behavior of borided and nitrided H13 steel[J].
擦系数、压入深度和残余深度随划痕次数的增加而增
Journal of Materials Engineering and Performance, 2018, 27(8):
加,残余划痕硬度则降低. 一定划痕次数后摩擦系数、
3886–3899. doi: 10.1007/s11665-018-3410-y.
压入深度和残余深度曲线达到稳定状态的原因是应 [12] Zhu Rongtao, Wang Xian, Li Chaoyong, et al. Strain-rate
变硬化增加速率逐渐降低. 压入深度和残余深度达到 dependence of mechanical behavior and deformation mechanisms in
稳定的划痕次数随法向载荷的增加而减小. bimodal nanostructured Ni under micro-scratch testing[J].
Mechanics of Materials, 2018, 121: 21–30. doi: 10.1016/j.mechmat.
参 考 文 献
2018.03.005.
[ 1 ] Briscoe B J, Pelillo E, Sinha S K. Scratch hardness and deformation [13] Jiang Han, Browning R, Fincher J, et al. Influence of surface
maps for polycarbonate and polyethylene[J]. Polymer Engineering & roughness and contact load on friction coefficient and scratch
Science, 1996, 36(24): 2996–3005. doi: 10.1002/pen.10702. behavior of thermoplastic olefins[J]. Applied Surface Science, 2008,
[ 2 ] Shi G, Li F, Tian H. Advances and application of polycarbonate in 254(15): 4494–4499. doi: 10.1016/j.apsusc.2008.01.067.
automobile windows and aero glass[J]. Materials Review, 2006, 20: [14] Kurkcu P, Andena L, Pavan A. An experimental investigation of the
404–407. scratch behaviour of polymers-2: Influence of hard or soft fillers[J].
[ 3 ] Liu Ming, Yang Shenghan, Gao Chenghui. Scratch behavior of Wear, 2014, 317(1–2): 277–290. doi: 10.1016/j.wear.2014.03.011.
polycarbonate by Rockwell C diamond indenter under progressive [15] Morón R C, Rodríguez-Castro G A, Melo-Máximo D V, et al.
loading[J]. Polymer Testing, 2020, 90: 106643. doi: 10.1016/j. Multipass and reciprocating microwear study of TiN based films[J].
polymertesting.2020.106643. Surface and Coatings Technology, 2019, 375: 793–801. doi: 10.
[ 4 ] Xu Yang, Li Dun, Shen Jiabin, et al. Research progress in scratch 1016/j.surfcoat.2019.07.085.