Page 104 - 《摩擦学学报》2021年第6期
P. 104
第 6 期 李正阳, 等: 工作电压对N36锆合金表面微弧氧化涂层磨蚀性能的影响 889
reactor[J]. Tribology, 2021, 41(3): 423–436 (in Chinese) [江海霞, [12] Wang Y, Tang H, Tan Y, et al. Cathodic voltage-dependent
段泽文, 马鹏翔, 等. 核反应堆中锆合金包壳及其表面涂层的微动 composition, microstructure and corrosion resistance of plasma
磨损行为研究进展[J]. 摩擦学学报, 2021, 41(3): 423–436]. doi: 10. electrolytic oxidation coatings formed on Zr-4 alloy[J]. RSC
16078/j.tribology.2020222. advances, 2016, 41(6): 34616–34624. doi: 10.1039/c6ra06197d.
[ 4 ] Kim K T. Evolutionary developments of advanced PWR nuclear [13] Li Zhengyang, Cai Zhenbing, Cui Ye, et al. Effect of oxidation time
fuels and cladding materials[J]. Nuclear Engineering and Design, on the impact wear of micro-arc oxidation coating on aluminum
2013, 263: 59–69. doi: 10.1016/j.nucengdes.2013.04.013. alloy[J]. Wear, 2019, 426–427: 285–295. doi: 10.1016/j.wear.2019.
[ 5 ] Cheng Yingliang, Cao Jinhui, Peng Zhaomei, et al. Wear-resistant 01.084.
coatings formed on Zircaloy-2 by plasma electrolytic oxidation in [14] Arun S, Arunnellaiappan T, Rameshbabu N. Fabrication of the
sodium aluminate electrolytes[J]. Electrochimica Acta, 2014, 116: nanoparticle incorporated PEO coating on commercially pure
453–466. doi: 10.1016/j.electacta.2013.11.079. zirconium and its corrosion resistance[J]. Surface and Coatings
[ 6 ] Cheng Yingliang, Wang Ting, Li Shaoxian, et al. The effects of Technology, 2016, 305: 264–273. doi: 10.1016/j.surfcoat.2016.07.
anion deposition and negative pulse on the behaviours of plasma 086.
electrolytic oxidation (PEO)-A systematic study of the PEO of a [15] Liu Ruirui, Li Zhengyang, Cai Zhenbing, et al. Effect of oxidation
Zirlo alloy in aluminate electrolytes[J]. Electrochimica Acta, 2017, time on fretting corrosion behavior of MAO coating on zirconium
225: 47–68. doi: 10.1016/j.electacta.2016.12.115. alloy[J]. Nuclear Power Engineering, 2020, 41(S1): 118–123
[ 7 ] Wei Kejian, Chen Lin, Qu Yao, et al. Tribological properties of (in Chinese) [刘睿睿, 李正阳, 蔡振兵, 等. 氧化时间对锆合金微弧
microarc oxidation coatings on Zirlo alloy[J]. Surface Engineering, 氧化涂层微动腐蚀性能的影响[J]. 核动力工程, 2020, 41(S1):
2019, 35(8): 692–700. doi: 10.1080/02670844.2019.1575001. 118–123]. doi: 10.13832/j.jnpe.2020.S1.0118.
[ 8 ] Lai Ping, Zhang Hao, Zhang Lefu, et al. Effect of micro-arc [16] Cui Xuejun, Lin Xiuzhou, Liu Chunhai, et al. Fabrication and
oxidation on fretting wear behavior of zirconium alloy exposed to corrosion resistance of a hydrophobic micro-arc oxidation coating on
high temperature water[J]. Wear, 2019, 424 –425: 53–61. doi: 10. AZ31 Mg alloy[J]. Corrosion Science, 2015, 90: 402–412. doi: 10.
1016/j.wear.2019.02.001. 1016/j.corsci.2014.10.041.
[ 9 ] Liu Baixing, Peng Zhenjun, Liang Jun. Investigation of friction and [17] Xing Yaru. Microstructure and corrosion behavior of microarc
wear performance and failure mechanism of peo coating on tc4 oxidation coatings on zircaloy-4[D]. Harbin: Harbin Institute of
alloy[J]. Tribology, 2019, 39(1): 50–56 (in Chinese) [刘百幸, 彭振 Technology, 2014 (in Chinese) [行亚茹. Zr4合金微弧氧化涂层的
军, 梁军. TC4合金微弧氧化膜的摩擦磨损性能及其失效机理研 组织结构与腐蚀学行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2014].
究[J]. 摩擦学学报, 2019, 39(1): 50–56]. doi: 10.16078/j.tribology. [18] Wang Linqing, Zhou Yongtao, Wang Junjun, et al. Corrosion-wear
2018116. interaction behavior of TC4 titanium alloy in simulated seawater[J].
[10] Wei Kejian, Xue Wenbin, Qu Yao, et al. Advance in microarc Tribology, 2019, 39(2): 206–212 (in Chinese) [王林青, 周永涛, 王
oxidation surface treatment on Zr[J]. Surface Technology, 2019, 军军, 等. TC4钛合金在模拟海水中腐蚀-磨损交互行为研究[J].
48(7): 11–23 (in Chinese) [魏克俭, 薛文斌, 曲尧, 等. 锆微弧氧化 摩 擦 学 学 报 , 2019, 39(2): 206–212]. doi: 10.16078/j.tribology.
表面处理技术研究进展[J]. 表面技术, 2019, 48(7): 11–23]. doi: 10. 2018086.
16490/j.cnki.issn.1001-3660.2019.07.002. [19] Mi Xue, Xie Hai, Peng Jinfang, et al. Effect of mating material on
[11] Li Zhengyang, Cai Zhenbing, Ding Yuan, et al. Characterization of fretting wear behavior of 690 alloy[J]. Tribology, 2020, 40(3):
graphene oxide/ZrO 2 composite coatings deposited on zirconium 314–321 (in Chinese) [米雪, 谢海, 彭金方, 等. 690合金传热管在
alloy by micro-arc oxidation[J]. Applied Surface Science, 2020, 506: 不同摩擦副条件下的微动磨损性能研究[J]. 摩擦学学报, 2020,
144928. doi: 10.1016/j.apsusc.2019.144928. 40(3): 314–321]. doi: 10.16078/j.tribology.2019199.