Page 104 - 《摩擦学学报》2021年第6期
P. 104

第 6 期                 李正阳, 等: 工作电压对N36锆合金表面微弧氧化涂层磨蚀性能的影响                                     889

                 reactor[J]. Tribology, 2021, 41(3): 423–436 (in Chinese) [江海霞,  [12]  Wang  Y,  Tang  H,  Tan  Y,  et  al.  Cathodic  voltage-dependent
                 段泽文, 马鹏翔, 等. 核反应堆中锆合金包壳及其表面涂层的微动                  composition,  microstructure  and  corrosion  resistance  of  plasma
                 磨损行为研究进展[J]. 摩擦学学报, 2021, 41(3): 423–436]. doi: 10.  electrolytic  oxidation  coatings  formed  on  Zr-4  alloy[J].  RSC
                 16078/j.tribology.2020222.                        advances, 2016, 41(6): 34616–34624. doi: 10.1039/c6ra06197d.
            [  4  ]  Kim  K  T.  Evolutionary  developments  of  advanced  PWR  nuclear  [13]  Li Zhengyang, Cai Zhenbing, Cui Ye, et al. Effect of oxidation time
                 fuels  and  cladding  materials[J].  Nuclear  Engineering  and  Design,  on  the  impact  wear  of  micro-arc  oxidation  coating  on  aluminum
                 2013, 263: 59–69. doi: 10.1016/j.nucengdes.2013.04.013.  alloy[J]. Wear, 2019, 426–427: 285–295. doi: 10.1016/j.wear.2019.
            [  5  ]  Cheng Yingliang, Cao Jinhui, Peng Zhaomei, et al. Wear-resistant  01.084.
                 coatings  formed  on  Zircaloy-2  by  plasma  electrolytic  oxidation  in  [14]  Arun  S,  Arunnellaiappan  T,  Rameshbabu  N.  Fabrication  of  the
                 sodium  aluminate  electrolytes[J].  Electrochimica  Acta,  2014,  116:  nanoparticle  incorporated  PEO  coating  on  commercially  pure
                 453–466. doi: 10.1016/j.electacta.2013.11.079.    zirconium  and  its  corrosion  resistance[J].  Surface  and  Coatings
            [  6  ]  Cheng  Yingliang,  Wang  Ting,  Li  Shaoxian,  et  al.  The  effects  of  Technology,  2016,  305:  264–273.  doi:  10.1016/j.surfcoat.2016.07.
                 anion  deposition  and  negative  pulse  on  the  behaviours  of  plasma  086.
                 electrolytic  oxidation  (PEO)-A  systematic  study  of  the  PEO  of  a  [15]  Liu Ruirui, Li Zhengyang, Cai Zhenbing, et al. Effect of oxidation
                 Zirlo alloy in aluminate electrolytes[J]. Electrochimica Acta, 2017,  time on fretting corrosion behavior of MAO coating on zirconium
                 225: 47–68. doi: 10.1016/j.electacta.2016.12.115.  alloy[J].  Nuclear  Power  Engineering,  2020,  41(S1):  118–123
            [  7  ]  Wei  Kejian,  Chen  Lin,  Qu  Yao,  et  al.  Tribological  properties  of  (in Chinese) [刘睿睿, 李正阳, 蔡振兵, 等. 氧化时间对锆合金微弧
                 microarc oxidation coatings on Zirlo alloy[J]. Surface Engineering,  氧化涂层微动腐蚀性能的影响[J]. 核动力工程, 2020, 41(S1):
                 2019, 35(8): 692–700. doi: 10.1080/02670844.2019.1575001.  118–123]. doi: 10.13832/j.jnpe.2020.S1.0118.
            [  8  ]  Lai  Ping,  Zhang  Hao,  Zhang  Lefu,  et  al.  Effect  of  micro-arc  [16]  Cui  Xuejun,  Lin  Xiuzhou,  Liu  Chunhai,  et  al.  Fabrication  and
                 oxidation on fretting wear behavior of zirconium alloy exposed to  corrosion resistance of a hydrophobic micro-arc oxidation coating on
                 high  temperature  water[J].  Wear,  2019,  424 –425:  53–61.  doi:  10.  AZ31 Mg alloy[J]. Corrosion Science, 2015, 90: 402–412. doi: 10.
                 1016/j.wear.2019.02.001.                          1016/j.corsci.2014.10.041.
            [  9  ]  Liu Baixing, Peng Zhenjun, Liang Jun. Investigation of friction and  [17]  Xing  Yaru.  Microstructure  and  corrosion  behavior  of  microarc
                 wear  performance  and  failure  mechanism  of  peo  coating  on  tc4  oxidation  coatings  on  zircaloy-4[D].  Harbin:  Harbin  Institute  of
                 alloy[J]. Tribology, 2019, 39(1): 50–56 (in Chinese) [刘百幸, 彭振  Technology, 2014 (in Chinese) [行亚茹. Zr4合金微弧氧化涂层的
                 军, 梁军. TC4合金微弧氧化膜的摩擦磨损性能及其失效机理研                   组织结构与腐蚀学行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2014].
                 究[J]. 摩擦学学报, 2019, 39(1): 50–56]. doi: 10.16078/j.tribology.  [18]  Wang Linqing, Zhou Yongtao, Wang Junjun, et al. Corrosion-wear
                 2018116.                                          interaction behavior of TC4 titanium alloy in simulated seawater[J].
            [10]  Wei  Kejian,  Xue  Wenbin,  Qu  Yao,  et  al.  Advance  in  microarc  Tribology, 2019, 39(2): 206–212 (in Chinese) [王林青, 周永涛, 王
                 oxidation  surface  treatment  on  Zr[J].  Surface  Technology,  2019,  军军, 等. TC4钛合金在模拟海水中腐蚀-磨损交互行为研究[J].
                 48(7): 11–23 (in Chinese) [魏克俭, 薛文斌, 曲尧, 等. 锆微弧氧化  摩 擦 学 学 报 ,  2019,  39(2):  206–212].  doi:  10.16078/j.tribology.
                 表面处理技术研究进展[J]. 表面技术, 2019, 48(7): 11–23]. doi: 10.  2018086.
                 16490/j.cnki.issn.1001-3660.2019.07.002.      [19]  Mi Xue, Xie Hai, Peng Jinfang, et al. Effect of mating material on
            [11]  Li Zhengyang, Cai Zhenbing, Ding Yuan, et al. Characterization of  fretting  wear  behavior  of  690  alloy[J].  Tribology,  2020,  40(3):
                 graphene  oxide/ZrO 2   composite  coatings  deposited  on  zirconium  314–321 (in Chinese) [米雪, 谢海, 彭金方, 等. 690合金传热管在
                 alloy by micro-arc oxidation[J]. Applied Surface Science, 2020, 506:  不同摩擦副条件下的微动磨损性能研究[J]. 摩擦学学报, 2020,
                 144928. doi: 10.1016/j.apsusc.2019.144928.        40(3): 314–321]. doi: 10.16078/j.tribology.2019199.
   99   100   101   102   103   104   105   106   107   108   109