Page 220 - 《振动工程学报》2025年第9期
P. 220
2150 振 动 工 程 学 报 第 38 卷
轮箱故障诊断方法 [J]. 机械工程学报,2023,59(8):32-41. rolling bearing fault diagnosis[J]. Journal of Vibration Engi-
LI Xin,YANG Yu,CHENG Jian,et al. Robustness imbal- neering,2022,35(3):760-770.
anced convex hull-based classification for bevel gearbox fault [16] PAN H Y,YANG Y,ZHENG J D,et al. Symplectic inter-
diagnosis[J]. Journal of Mechanical Engineering, 2023, active support matrix machine and its application in roller
59(8):32-41. bearing condition monitoring[J]. Neurocomputing, 2020,
[7] 张振海,王维庆,王海云,等. 基于 HCS-GWO-MSVM 的 398:1-10.
风电机组齿轮箱复合故障诊断研究 [J]. 太阳能学报, [17] GU M G, ZHENG J D, PAN H Y, et al. Ramp sparse
2021,42(10):176-182. support matrix machine and its application in roller bearing
ZHANG Zhenhai,WANG Weiqing,WANG Haiyun,et al. fault diagnosis[J]. Applied Soft Computing, 2021, 113:
Research on compound fault diagnosis of wind turbine gear- 107928.
box based on HCS-GWO-MSVM[J]. Acta Energiae Solaris [18] LI X, LI Y, YAN K, et al. Intelligent fault diagnosis of
Sinica,2021,42(10):176-182. bevel gearboxes using semi-supervised probability support
[8] PANG B, TIAN T, TANG G J. Fault state recognition of matrix machine and infrared imaging[J]. Reliability Engineer-
wind turbine gearbox based on generalized multi-scale ing & System Safety,2023,230:108921.
dynamic time warping[J]. Structural Health Monitoring, [19] WEI F,WANG G,REN B Y,et al. Multisensor fused fault
2021,20(6):3007-3023. diagnosis for rotation machinery based on supervised second-
[9] JIANG G Q,HE H B,YAN J,et al. Multiscale convolu- order tensor locality preserving projection and weighted-near-
tional neural networks for fault diagnosis of wind turbine gear- est k-neighbor classifier under assembled matrix distance
box[J]. IEEE Transactions on Industrial Electronics, 2019, metric[J]. Shock and Vibration,2016,2016(1): 1212457.
66(4):3196-3207. [20] HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris
[10] JAMIL F, VERSTRAETEN T, NOWÉ A, et al. A deep Hawks optimization: algorithm and applications[J]. Future
boosted transfer learning method for wind turbine gearbox Generation Computer Systems,2019,97:849-872.
[21] GLOWINSKI R. On Alternating Direction Methods of Multi-
fault detection[J]. Renewable Energy,2022,197:331-341.
[11] SHAO H D, XIA M, WAN J F, et al. Modified stacked pliers: A Historical Perspective[M]// Modeling, Simulation
autoencoder using adaptive Morlet wavelet for intelligent fault and Optimization for Science and Technology,2014:59-82.
diagnosis of rotating machinery[J]. IEEE/ASME Transactions [22] ZHAO H M,LIU J,CHEN H Y,et al. Intelligent diagno-
on Mechatronics,2022,27(1):24-33. sis using continuous wavelet transform and Gauss convolu-
[12] JIANG X Y,KONG X Y,GE Z Q. Augmented industrial tional deep belief network[J]. IEEE Transactions on Reliabil-
data-driven modeling under the curse of dimensionality[J]. ity,2023,72(2):692-702.
IEEE/CAA Journal of Automatica Sinica, 2023, 10( 6) : [23] WU C Z,JIANG P C,DING C,et al. Intelligent fault diag-
nosis of rotating machinery based on one-dimensional convo-
1445-1461.
[13] LUO L, XIE Y B, ZHANG Z H, et al. Support matrix lutional neural network[J]. Computers in Industry, 2019,
machines[C]// Proceedings of the 32nd International Confer- 108:53-61.
[24] HE Z Y,SHAO H D,CHENG J S,et al. Support tensor
ence on International Conference on Machine Learning. Lille,
machine with dynamic penalty factors and its application to the
France:PMLR,2016:938-947.
[14] LI X,YANG Y,PAN H Y,et al. Non-parallel least squares fault diagnosis of rotating machinery with unbalanced data[J].
Mechanical Systems and Signal Processing, 2020, 141:
support matrix machine for rolling bearing fault diagnosis[J].
106441.
Mechanism and Machine Theory,2020,145:103676.
[15] 徐海锋,潘海洋,郑近德,等. 交互偏移支持矩阵机及其
在滚动轴承故障诊断中的应用 [J]. 振动工程学报,2022, 第一作者:李 鑫(1993—),男,博士,讲师。
35(3):760-770. E-mail:li_xin@cumt.edu.cn
XU Haifeng,PAN Haiyang,ZHENG Jinde,et al. Interac- 通信作者:司 垒(1987—),男,博士,副教授。
tive deviation support matrix machine and its application in E-mail: lei.si@cumt.edu.cn