Page 220 - 《振动工程学报》2025年第9期
P. 220

2150                               振     动     工     程     学     报                     第 38 卷

                  轮箱故障诊断方法      [J]. 机械工程学报,2023,59(8):32-41.       rolling  bearing  fault  diagnosis[J].  Journal  of  Vibration  Engi-
                  LI Xin,YANG Yu,CHENG Jian,et al. Robustness imbal-  neering,2022,35(3):760-770.
                  anced convex hull-based classification for bevel gearbox fault  [16]  PAN H Y,YANG Y,ZHENG J D,et al. Symplectic inter-
                  diagnosis[J].  Journal  of  Mechanical  Engineering, 2023,  active  support  matrix  machine  and  its  application  in  roller
                  59(8):32-41.                                      bearing  condition  monitoring[J].  Neurocomputing, 2020,
              [7]  张振海,王维庆,王海云,等. 基于 HCS-GWO-MSVM 的                 398:1-10.
                  风电机组齿轮箱复合故障诊断研究              [J]. 太阳能学报,      [17]  GU  M  G, ZHENG  J  D, PAN  H  Y, et  al.  Ramp  sparse
                  2021,42(10):176-182.                              support  matrix  machine  and  its  application  in  roller  bearing
                  ZHANG Zhenhai,WANG Weiqing,WANG Haiyun,et al.     fault  diagnosis[J].  Applied  Soft  Computing, 2021, 113:
                  Research on compound fault diagnosis of wind turbine gear-  107928.
                  box  based  on  HCS-GWO-MSVM[J].  Acta  Energiae  Solaris  [18]  LI  X, LI  Y, YAN  K, et  al.  Intelligent  fault  diagnosis  of
                  Sinica,2021,42(10):176-182.                       bevel  gearboxes  using  semi-supervised  probability  support
              [8]  PANG  B, TIAN  T, TANG  G  J.  Fault  state  recognition  of  matrix machine and infrared imaging[J]. Reliability Engineer-
                  wind  turbine  gearbox  based  on  generalized  multi-scale  ing & System Safety,2023,230:108921.
                  dynamic  time  warping[J].  Structural  Health  Monitoring,  [19]  WEI F,WANG G,REN B Y,et al. Multisensor fused fault
                  2021,20(6):3007-3023.                             diagnosis for rotation machinery based on supervised second-
              [9]  JIANG G Q,HE H B,YAN J,et al. Multiscale convolu-  order tensor locality preserving projection and weighted-near-
                  tional neural networks for fault diagnosis of wind turbine gear-  est  k-neighbor  classifier  under  assembled  matrix  distance
                  box[J].  IEEE  Transactions  on  Industrial  Electronics, 2019,  metric[J]. Shock and Vibration,2016,2016(1): 1212457.
                  66(4):3196-3207.                              [20]  HEIDARI  A  A, MIRJALILI  S, FARIS  H, et  al.  Harris
              [10]  JAMIL  F, VERSTRAETEN  T, NOWÉ  A, et  al.  A  deep  Hawks  optimization: algorithm  and  applications[J].  Future
                  boosted  transfer  learning  method  for  wind  turbine  gearbox  Generation Computer Systems,2019,97:849-872.
                                                                [21]  GLOWINSKI R. On Alternating Direction Methods of Multi-
                  fault detection[J]. Renewable Energy,2022,197:331-341.
              [11]  SHAO  H  D, XIA  M, WAN  J  F, et  al.  Modified  stacked  pliers: A  Historical  Perspective[M]//  Modeling, Simulation
                  autoencoder using adaptive Morlet wavelet for intelligent fault  and Optimization for Science and Technology,2014:59-82.
                  diagnosis of rotating machinery[J]. IEEE/ASME Transactions  [22]  ZHAO H M,LIU J,CHEN H Y,et al. Intelligent diagno-
                  on Mechatronics,2022,27(1):24-33.                 sis  using  continuous  wavelet  transform  and  Gauss  convolu-
              [12]  JIANG X Y,KONG X Y,GE Z Q. Augmented industrial  tional deep belief network[J]. IEEE Transactions on Reliabil-
                  data-driven  modeling  under  the  curse  of  dimensionality[J].  ity,2023,72(2):692-702.
                  IEEE/CAA  Journal  of  Automatica  Sinica, 2023, 10( 6) :  [23]  WU C Z,JIANG P C,DING C,et al. Intelligent fault diag-
                                                                    nosis of rotating machinery based on one-dimensional convo-
                  1445-1461.
              [13]  LUO  L, XIE  Y  B, ZHANG  Z  H, et  al.  Support  matrix  lutional  neural  network[J].  Computers  in  Industry, 2019,
                  machines[C]//  Proceedings  of  the  32nd  International  Confer-  108:53-61.
                                                                [24]  HE Z Y,SHAO H D,CHENG J S,et al. Support tensor
                  ence on International Conference on Machine Learning. Lille,
                                                                    machine with dynamic penalty factors and its application to the
                  France:PMLR,2016:938-947.
              [14]  LI X,YANG Y,PAN H Y,et al. Non-parallel least squares  fault diagnosis of rotating machinery with unbalanced data[J].
                                                                    Mechanical  Systems  and  Signal  Processing, 2020, 141:
                  support matrix machine for rolling bearing fault diagnosis[J].
                                                                    106441.
                  Mechanism and Machine Theory,2020,145:103676.
              [15]  徐海锋,潘海洋,郑近德,等. 交互偏移支持矩阵机及其
                  在滚动轴承故障诊断中的应用          [J]. 振动工程学报,2022,      第一作者:李 鑫(1993—),男,博士,讲师。
                  35(3):760-770.                                        E-mail:li_xin@cumt.edu.cn
                  XU Haifeng,PAN Haiyang,ZHENG Jinde,et al. Interac-  通信作者:司 垒(1987—),男,博士,副教授。
                  tive  deviation  support  matrix  machine  and  its  application  in  E-mail: lei.si@cumt.edu.cn
   215   216   217   218   219   220   221   222   223   224   225