Page 31 - 《武汉大学学报(信息科学版)》2025年第6期
P. 31
第 50 卷第 6 期 甄 杰等:面向应急通信选址的增强卷积神经网络山顶点快速提取方法 1053
[8] 顾留碗, 王春, 李鹏, 等 . 利用 DEM 提取山顶点精 193-202.
度研究[J]. 武汉大学学报(信息科学版), 2016, 41 [14] GIRSHICK R, DONAHUE J, DARRELL T, et
(1): 131-135. al. Rich Feature Hierarchies for Accurate Object De‑
GU Liuwan, WANG Chun, LI Peng, et al. Re‑ tection and Semantic Segmentation[C]//IEEE Con‑
search on Mountain Top Extraction Accuracy Based ference on Computer Vision and Pattern Recogni‑
on DEM[J]. Geomatics and Information Science of tion, Columbus, USA, 2014.
Wuhan University, 2016, 41(1): 131-135. [15] GIRSHICK R. Fast R-CNN[C]//IEEE Interna‑
[9] 周访滨, 肖智文, 刘学军, 等 . 栅格 DEM 山顶点提 tional Conference on Computer Vision (ICCV),
取的坡向分布特征法[J]. 武汉大学学报(信息科学 Santiago, Chile, 2015.
版), 2024, 49(3): 419-425. [16] REN S Q, HE K M, GIRSHICK R, et al. Faster
ZHOU Fangbin, XIAO Zhiwen, LIU Xuejun, et R-CNN: Towards Real-Time Object Detection
al. Mountain Peak Extraction of Grid DEM Based with Region Proposal Networks[J]. IEEE Transac‑
on Aspect Distribution Feature[J]. Geomatics and tions on Pattern Analysis and Machine Intelligence,
Information Science of Wuhan University, 2024, 49 2017, 39(6): 1137-1149.
(3): 419-425. [17] SIMONYAN K, ZISSERMA A. Very Deep Con‑
[10] 仲腾, 汤国安, 周毅, 等 . 基于反地形 DEM 的山顶 volutional Networks for Large-Scale Image Recogni‑
点自动提取[J]. 测绘通报, 2009 (4): 35-37. tion [C]//The 3rd International Conference on
ZHONG Teng, TANG Guoan, ZHOU Yi, et al. Learning Representations, San Diego, USA, 2015.
Method of Extracting Surface Peaks Based on Re‑ [18] HE K M, ZHANG X Y, REN S Q, et al. Deep Re‑
verse DEMs[J]. Bulletin of Surveying and Map‑ sidual Learning for Image Recognition[C]//IEEE
ping, 2009 (4): 35-37. Conference on Computer Vision and Pattern Recog‑
[11] ZHENG Z Q, XIAO X W, ZHONG Z C, et al. A nition (CVPR), Las Vegas, USA, 2016.
Rapid and High-Precision Mountain Vertex Extrac‑ [19] ZHANG H, WU C R, ZHANG Z Y, et al.
tion Method Based on Hotspot Analysis Clustering ResNeSt: Split-Attention Networks [C]//IEEE/
and Improved Eight-Connected Extraction Algo‑ CVF Conference on Computer Vision and Pattern
rithms for Digital Elevation Models[J]. Remote Recognition Workshops (CVPRW), New Orleans,
Sensing, 2021, 13(1): 81. USA, 2022.
[12] 张福浩, 朱月月, 赵习枝, 等 . 地理因子支持下的 [20] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Fea‑
滑坡隐患点空间分布特征及识别研究[J]. 武汉大 ture Pyramid Networks for Object Detection[C]//
学学报(信息科学版), 2020, 45(8): 1233-1244. IEEE Conference on Computer Vision and Pattern
ZHANG Fuhao, ZHU Yueyue, ZHAO Xizhi, et Recognition (CVPR), Honolulu, USA, 2017.
al. Spatial Distribution and Identification of Hidden [21] LIU H K, DING Q C, HU Z C, et al. Remote
Danger Points of Landslides Based on Geographical Sensing Image Vehicle Detection Based on Pre-
Factors[J]. Geomatics and Information Science of training and Random-Initialized Fusion Network
Wuhan University, 2020, 45(8): 1233-1244. [J]. IEEE Geoscience and Remote Sensing Letters,
[13] FUKUSHIMA K. Neocognitron : A Self-Or‑ 2021, 19: 3508605.
ganizing Neural Network Model for a Mechanism of [22] BOUSSAÏD I, LEPAGNOT J, SIARRY P. A
Pattern Recognition Unaffected by Shift in Position Survey on Optimization Metaheuristics[J]. Informa‑
[J]. Biological Cybernetics, 1980, 36 (4) : tion Sciences, 2013, 237: 82-117.