Page 31 - 《武汉大学学报(信息科学版)》2025年第6期
P. 31

第 50 卷第 6 期       甄   杰等:面向应急通信选址的增强卷积神经网络山顶点快速提取方法                                  1053


               [8]  顾留碗, 王春, 李鹏, 等 .  利用 DEM 提取山顶点精                  193-202.
                    度研究[J].  武汉大学学报(信息科学版), 2016, 41            [14]  GIRSHICK  R,  DONAHUE  J,  DARRELL  T,  et
                    (1): 131-135.                                    al.  Rich Feature Hierarchies for Accurate Object De‑
                    GU  Liuwan,  WANG  Chun,  LI  Peng,  et  al.   Re‑  tection and Semantic Segmentation[C]//IEEE Con‑
                    search on Mountain Top Extraction Accuracy Based   ference  on  Computer  Vision  and  Pattern  Recogni‑
                    on DEM[J].  Geomatics and Information Science of   tion, Columbus, USA, 2014.

                    Wuhan University, 2016, 41(1): 131-135.     [15]  GIRSHICK  R.   Fast  R-CNN[C]//IEEE  Interna‑
               [9]  周访滨, 肖智文, 刘学军, 等 .  栅格 DEM 山顶点提                  tional  Conference  on  Computer  Vision (ICCV),
                    取的坡向分布特征法[J].  武汉大学学报(信息科学                       Santiago, Chile, 2015.
                    版), 2024, 49(3): 419-425.                   [16]  REN S Q, HE K M, GIRSHICK R, et al.  Faster
                    ZHOU  Fangbin,  XIAO  Zhiwen,  LIU  Xuejun,  et   R-CNN:  Towards  Real-Time  Object  Detection
                    al.   Mountain  Peak  Extraction  of  Grid  DEM  Based   with Region Proposal Networks[J].  IEEE Transac‑
                    on  Aspect  Distribution  Feature[J].   Geomatics  and   tions on Pattern Analysis and Machine Intelligence,
                    Information Science of Wuhan University, 2024, 49  2017, 39(6): 1137-1149.
                    (3): 419-425.                               [17]  SIMONYAN  K,  ZISSERMA  A.   Very  Deep  Con‑
               [10]  仲腾, 汤国安, 周毅, 等 .  基于反地形 DEM 的山顶                 volutional Networks for Large-Scale Image Recogni‑
                    点自动提取[J].  测绘通报, 2009 (4): 35-37.                tion [C]//The  3rd  International  Conference  on
                    ZHONG  Teng,  TANG  Guoan,  ZHOU  Yi,  et  al.    Learning Representations, San Diego, USA, 2015.
                    Method  of  Extracting  Surface  Peaks  Based  on  Re‑  [18]  HE K M, ZHANG X Y, REN S Q, et al.  Deep Re‑
                    verse  DEMs[J].   Bulletin  of  Surveying  and  Map‑  sidual  Learning  for  Image  Recognition[C]//IEEE
                    ping, 2009 (4): 35-37.                           Conference on Computer Vision and Pattern Recog‑
               [11]  ZHENG Z Q, XIAO X W, ZHONG Z C, et al.  A       nition (CVPR), Las Vegas, USA, 2016.
                    Rapid  and  High-Precision  Mountain  Vertex  Extrac‑  [19]  ZHANG  H,  WU  C  R,  ZHANG  Z  Y,  et  al.
                    tion  Method  Based  on  Hotspot  Analysis  Clustering   ResNeSt:  Split-Attention  Networks [C]//IEEE/
                    and  Improved  Eight-Connected  Extraction  Algo‑  CVF  Conference  on  Computer  Vision  and  Pattern
                    rithms  for  Digital  Elevation  Models[J].   Remote   Recognition Workshops (CVPRW), New Orleans,
                    Sensing, 2021, 13(1): 81.                        USA, 2022.
               [12]  张福浩, 朱月月, 赵习枝, 等 .  地理因子支持下的               [20]  LIN T Y, DOLLÁR P, GIRSHICK R, et al.  Fea‑
                    滑坡隐患点空间分布特征及识别研究[J].  武汉大                        ture  Pyramid  Networks  for  Object  Detection[C]//
                    学学报(信息科学版), 2020, 45(8): 1233-1244.              IEEE  Conference  on  Computer  Vision  and  Pattern
                    ZHANG  Fuhao,  ZHU  Yueyue,  ZHAO  Xizhi,  et    Recognition (CVPR), Honolulu, USA, 2017.
                    al.   Spatial  Distribution  and  Identification  of  Hidden   [21]  LIU  H  K,  DING  Q  C,  HU  Z  C,  et  al.   Remote
                    Danger  Points  of  Landslides  Based  on  Geographical   Sensing  Image  Vehicle  Detection  Based  on  Pre-
                    Factors[J].   Geomatics  and  Information  Science  of   training  and  Random-Initialized  Fusion  Network

                    Wuhan University, 2020, 45(8): 1233-1244.       [J].  IEEE Geoscience and Remote Sensing Letters,
               [13]  FUKUSHIMA  K.   Neocognitron :  A  Self-Or‑     2021, 19: 3508605.
                    ganizing  Neural Network Model for a Mechanism of   [22]  BOUSSAÏD  I,  LEPAGNOT  J,  SIARRY  P.   A
                    Pattern  Recognition  Unaffected  by  Shift  in  Position  Survey on Optimization Metaheuristics[J].  Informa‑
                    [J].   Biological  Cybernetics,  1980,  36 (4) :   tion Sciences, 2013, 237: 82-117.
   26   27   28   29   30   31   32   33   34   35   36