Page 201 - 《武汉大学学报(信息科学版)》2025年第6期
P. 201

第 50 卷第 6 期         陈学业等:结合 SBAS-InSAR 技术与深度神经网络的滑坡早期识别                              1223


                    [J].  Computers & Geosciences, 2015, 81: 1-11.   SAR and Flow Model[J].  Remote Sensing of Envi‑
               [8]  晏同珍, 伍法权, 殷坤龙 .  滑坡系统静动态规律及                      ronment, 2022, 271: 112899.
                    斜坡不稳定性空时定量预测[J].  地球科学, 1989,               [16]  GABRIEL A K, GOLDSTEIN R M.  Crossed Or‑
                    14(2): 117-133.                                  bit Interferometry[C]//International Geoscience and
                    YAN Tongzhen,WU Faquan, YIN Kunlong.  Static     Remote Sensing Symposium, Edinburgh, UK, 1988.
                    and  Dynamic  Regularity  of  Landslides  and  Space-  [17]  FERRETTI A, PRATI C, ROCCA F.  Nonlinear
                    Time Prognosis of Slope Instability[J]. Earth Scien‑  Subsidence  Rate  Estimation  Using  Permanent  Scat‑

                    ce, 1989, 14(2): 117-133.                        terers in Differential SAR Interferometry[J].  IEEE
               [9]  徐胜华, 刘纪平, 王想红, 等 .  熵指数融入支持向                     Transactions  on  Geoscience  and  Remote  Sensing,
                    量机的滑坡灾害易发性评价方法: 以陕西省为例                           2000, 38(5): 2202-2212.
                    [J].  武 汉 大 学 学 报(信 息 科 学 版), 2020, 45(8):   [18]  BERARDINO  P,  FORNARO  G,  LANARI  R,  et
                    1214-1222.                                       al.  A New Algorithm for Surface Deformation Moni‑
                    XU  Shenghua,  LIU  Jiping,  WANG  Xianghong,  et   toring Based on Small Baseline Differential SAR In‑
                    al.   Landslide  Susceptibility  Assessment  Method  In‑  terferograms[J].   IEEE  Transactions  on  Geoscience
                    corporating Index of Entropy Based on Support Vec‑  and Remote Sensing, 2002, 40(11): 2375-2383.
                    tor Machine: A Case Study of Shaanxi Province[J].    [19]  SUN  H  M,  PENG  H  X,  ZENG  M,  et  al.   Land
                    Geomatics  and  Information  Science  of  Wuhan  Uni‑  Subsidence  in  a  Coastal  City  Based  on  SBAS-In‑

                    versity, 2020, 45(8): 1214-1222.                 SAR  Monitoring:  A  Case  Study  of  Zhuhai,  China
               [10]  ZENG T R, WU L Y, PEDUTO D, et al.  Ensem‑     [J].  Remote Sensing, 2023, 15(9): 2424.
                    ble Learning Framework for Landslide Susceptibility   [20]  TANG H M, WASOWSKI J, JUANG C H.  Geo‑
                    Mapping:  Different  Basic  Classifier  and  Ensemble   hazards in the Three Gorges Reservoir Area, China :
                    Strategy[J].   Geoscience  Frontiers,  2023,  14(6):   Lessons Learned from Decades of Research[J].  En‑
                    101645.                                          gineering Geology, 2019, 261: 105267.
               [11]  ALI  S  A,  PARVIN  F,  VOJTEKOVÁ  J,  et  al.    [21]  殷跃平, 黄波林, 张枝华, 等 .  三峡工程库区地质
                    GIS-Based  Landslide  Susceptibility  Modeling:  A   灾害防治[M].  北京: 科学出版社, 2022.
                    Comparison  Between  Fuzzy  Multi-criteria  and  Ma‑  YIN  Yueping,  HUANG  Bolin,  ZHANG  Zhihua.
                    chine  Learning  Algorithms[J].   Geoscience  Fron‑  Prevention  and  Control  of  Geological  Disasters  in
                    tiers, 2021, 12(2): 857-876.                     Three Gorges Reservoir Area[M].  Beijing: Science
               [12]  HAKIM W L, REZAIE F, NUR A S, et al.  Con‑      Press, 2022.
                    volutional Neural Network (CNN) with Metaheuris‑  [22]  谢爽, 陈松, 陈江军, 等 .  基于 GIS 和信息量模型
                    tic  Optimization  Algorithms  for  Landslide  Suscepti‑  的山地环境地质灾害易发性评价: 以湖北省秭归县
                    bility Mapping in Icheon, South Korea[J].   Journal   为例[J].  资源环境与工程, 2023, 37(5): 567-577.

                    of Environmental Management, 2022, 305: 114367.  XIE Shuang, CHEN Song, CHEN Jiangjun, et al.
               [13]  HE  Y,  ZHAO  Z  A,  YANG  W,  et  al.   A  Unified   Susceptibility Evaluation of Mountain Environmental
                    Network  of  Information  Considering  Superimposed   Geological  Disasters  Based  on  GIS  and  Information
                    Landslide Factors Sequence and Pixel Spatial Neigh‑  Model:  Taking  Zigui  County  in  Hubei  Province  as
                    bourhood  for  Landslide  Susceptibility  Mapping[J].    an Example[J]. Resources Environment & Engineering,
                    International  Journal  of  Applied  Earth  Observation   2023, 37(5): 567-577.

                    and Geoinformation, 2021, 104: 102508.      [23]  叶润青, 付小林, 郭飞, 等 .  三峡水库运行期地质
               [14]  兑紫璇, 王卿, 王敏, 等 .  基于多源遥感及气象数                    灾 害 变 形 特 征 及 机 制 分 析[J].   工 程 地 质 学 报 ,
                    据的河流非光学活性水质参数反演模型研究[J].                          2021, 29(3): 680-692.
                    遥感技术与应用, 2024, 39(1): 120-133.                   YE Runqing,FU Xiaolin,GUO Fei, et al.  Analysis
                    DUI Zixuan, WANG Qing, WANG Min, et al.  Re‑     on  Deformation  Characteristics  and  Mechanisms  of
                    search on the Inversion Model of River Non-optical‑  Geological  Hazards  During  the  Operation  of  the
                    ly Active Water Quality Parameters Based on Multi-  Three Gorges Reservoir[J].  Journal of Engineering
                    source  Remote  Sensing  and  Meteorological  Data  Geology, 2021, 29(3): 680-692.
                    [J].   Remote  Sensing  Technology  and  Application,   [24]  李俊鹏, 王文才, 王创业 .  边帮压煤井工开采诱发
                    2024, 39(1): 120-133.                            边 坡 变 形 破 坏 及 失 稳 控 制 研 究[J].   煤 炭 技 术 ,
               [15]  ROY  P,  MARTHA  T  R,  KHANNA  K,  et  al.     2024, 43(11): 140-146.
                    Time  and  Path  Prediction  of  Landslides  Using  In‑  LI  Junpeng,  WANG  Wencai,  WANG  Chuangye.
   196   197   198   199   200   201   202   203   204   205   206