Page 101 - 《武汉大学学报(信息科学版)》2025年第6期
P. 101

第 50 卷第 6 期         王   勇等:应急救援地理空间情报:概念特征、生成技术及应用实践                                 1123


                    服务研究[D].  武汉: 中国地质大学, 2023.                      Response from Social Media with BERT[J].  Com‑
                    LI Jie.  Research on Spatiotemporal Observation Ca‑  puters,  Environment  and  Urban  Systems,  2022,
                    pability  Object  Field  and  Computing  Service  under   95: 101824.
                    the  Geospatial  Sensor  Web  Environment[D].   Wu‑  [34]  YIN K, LIU C K, MOSTAFAVI A, et al.  Crisis‑
                    han: China University of Geosciences, 2023.      Sense-LLM:  Instruction  Fine-Tuned  Large  Lan‑
               [24]  ADEEL  A,  GOGATE  M,  FAROOQ  S,  et  al.   A   guage Model for Multi-label Social Media Text Classi‑
                    Survey on the Role of Wireless Sensor Networks and   fication in Disaster Informatics[EB/OL].  (2024-02-
                    IoT  in  Disaster  Management[EB/OL].  (2019-09-  07). https://arxiv. org/abs/2406. 15477v2.
                    23).  https://arxiv. org/abs/1909. 10353v1.  [35]  HUANG  L  D ,  SHI  P  P ,  ZHU  H  C ,  et  al.
               [25]  AL  QUNDUS  J,  DABBOUR  K,  GUPTA  S,  et      Early  Detection  of  Emergency  Events  from  Social
                    al.  Wireless Sensor Network for AI-Based Flood Di‑  Media :  A  New  Text  Clustering  Approach[J].
                    saster  Detection [J].   Annals  of  Operations  Re‑  Natural  Hazards ,  2022 ,  111(1):  851-875.

                    search, 2022, 319(1): 697-719.              [36]  HOU  H  W ,  SHEN  L ,  JIA  J  N ,  et  al.   An  Inte‑
               [26]  CHEN  J  D,  CHO  Y  K.   CrackEmbed:  Point  Fea‑  grated  Framework  for  Flood  Disaster  Information
                    ture Embedding for Crack Segmentation from Disas‑  Extraction  and  Analysis  Leveraging  Social  Media
                    ter  Site  Point  Clouds  with  Anomaly  Detection[J].    Data:  A  Case  Study  of  the  Shouguang  Flood  in
                    Advanced  Engineering  Informatics,  2022,  52:   China [J].   Science  of  the  Total  Environment ,
                    101550.                                          2024 , 949 : 174948.
               [27]  DHINAKARAN  D,  UDHAYA  SANKAR  S  M,      [37]  WANG Z Y, YE X Y.  Space, Time, and Situatio
                    LATHA B C, et al.  Dam Management and Disaster   nal Awareness in Natural Hazards: A Case Study of
                    Monitoring  System  Using  IoT[C]//2023  Interna‑  Hurricane  Sandy  with  Social  Media  Data[J].   Car‑
                    tional Conference on Sustainable Computing and Da‑  tography  and  Geographic  Information  Science,
                    ta Communication Systems (ICSCDS), Erode, In‑    2019, 46(4): 334-346.
                    dia, 2023.                                  [38]  HUANG L D, SHI P P, ZHU H C.  An Integrated
               [28]  RAMESH  M  V.   Design,  Development,  and  De‑  Urgency Evaluation Approach of Relief Demands for
                    ployment  of  a  Wireless  Sensor  Network  for  Detec‑  Disasters  Based  on  Social  Media  Data[J].   Interna‑
                    tion  of  Landslides[J].   Ad  Hoc  Networks,  2014,   tional  Journal  of  Disaster  Risk  Reduction,  2022,
                    13: 2-18.                                        80: 103208.
               [29]  VERA-ORTEGA  P,  VÁZQUEZ-MARTÍN  R,        [39]  SINGH J P, DWIVEDI Y K, RANA N P, et al.
                    FERNANDEZ-LOZANO  J  J,  et  al.   Enabling  Re‑  Event  Classification  and  Location  Prediction  from
                    mote Responder Bio-Signal Monitoring in a Cooper‑  Tweets  During  Disasters[J].   Annals  of  Operations
                    ative  Human – Robot  Architecture  for  Search  and   Research, 2019, 283(1): 737-757.
                    Rescue[J].  Sensors, 2023, 23(1): 49.       [40]  XING Z Y, ZHANG X D, ZAN X L, et al.  Crowd‑
               [30]  FOROUGHNIA  F,  MACCHIARULO  V,  BERG           sourced  Social  Media  and  Mobile  Phone  Signaling
                    L, et al.  Quantitative Assessment of Earthquake-In‑  Data for Disaster Impact Assessment: A Case Study
                    duced Building Damage at Regional Scale Using Li‑  of  the  8. 8  Jiuzhaigou  Earthquake[J].   International
                    DAR  Data[J].   International  Journal  of  Disaster   Journal  of  Disaster  Risk  Reduction,  2021,  58:
                    Risk Reduction, 2024, 106: 104403.               102200.
               [31]  JIANG N, LI H B, LI C J, et al.  A Fusion Method   [41]  ZIAULLAH A W, OFLI F, IMRAN M.  Monitor‑
                    Using  Terrestrial  Laser  Scanning  and  Unmanned   ing  Critical  Infrastructure  Facilities  During  Disasters
                    Aerial Vehicle Photogrammetry for Landslide Defor‑  Using  Large  Language  Models[EB/OL].  (2024-
                    mation  Monitoring  Under  Complex  Terrain  Condi‑  04-12).  https://arxiv. org/abs/2404. 14432v1.
                    tions[J].  IEEE Transactions on Geoscience and Re‑  [42]  SEEBERGER  P ,  RIEDHAMMER  K.   Multi-

                    mote Sensing, 2022, 60: 4707214.                 Query  Focused  Disaster  Summarization  via  Instruc‑
               [32]  HAO H Y, WANG Y.  Leveraging Multimodal So‑     tion-Based  Prompting [EB/OL].   (2024-09-08).
                    cial Media Data for Rapid Disaster Damage Assess‑  https://arxiv. org/abs/2402. 09008v1.
                    ment[J].  International Journal of Disaster Risk Re‑  [43]  MADICHETTY  S,  M  S.   Classifying  Informative
                    duction, 2020, 51: 101760.                       and  Non-Informative  Tweets  from  the  Twitter  by
               [33]  ZHOU  B,  ZOU  L,  MOSTAFAVI  A,  et  al.   Vic‑  Adapting Image Features During Disaster[J].  Multi‑
                    timFinder:  Harvesting  Rescue  Requests  in  Disaster   media  Tools  and  Applications,  2020,  79(39):
   96   97   98   99   100   101   102   103   104   105   106