Page 101 - 《武汉大学学报(信息科学版)》2025年第6期
P. 101
第 50 卷第 6 期 王 勇等:应急救援地理空间情报:概念特征、生成技术及应用实践 1123
服务研究[D]. 武汉: 中国地质大学, 2023. Response from Social Media with BERT[J]. Com‑
LI Jie. Research on Spatiotemporal Observation Ca‑ puters, Environment and Urban Systems, 2022,
pability Object Field and Computing Service under 95: 101824.
the Geospatial Sensor Web Environment[D]. Wu‑ [34] YIN K, LIU C K, MOSTAFAVI A, et al. Crisis‑
han: China University of Geosciences, 2023. Sense-LLM: Instruction Fine-Tuned Large Lan‑
[24] ADEEL A, GOGATE M, FAROOQ S, et al. A guage Model for Multi-label Social Media Text Classi‑
Survey on the Role of Wireless Sensor Networks and fication in Disaster Informatics[EB/OL]. (2024-02-
IoT in Disaster Management[EB/OL]. (2019-09- 07). https://arxiv. org/abs/2406. 15477v2.
23). https://arxiv. org/abs/1909. 10353v1. [35] HUANG L D , SHI P P , ZHU H C , et al.
[25] AL QUNDUS J, DABBOUR K, GUPTA S, et Early Detection of Emergency Events from Social
al. Wireless Sensor Network for AI-Based Flood Di‑ Media : A New Text Clustering Approach[J].
saster Detection [J]. Annals of Operations Re‑ Natural Hazards , 2022 , 111(1): 851-875.
search, 2022, 319(1): 697-719. [36] HOU H W , SHEN L , JIA J N , et al. An Inte‑
[26] CHEN J D, CHO Y K. CrackEmbed: Point Fea‑ grated Framework for Flood Disaster Information
ture Embedding for Crack Segmentation from Disas‑ Extraction and Analysis Leveraging Social Media
ter Site Point Clouds with Anomaly Detection[J]. Data: A Case Study of the Shouguang Flood in
Advanced Engineering Informatics, 2022, 52: China [J]. Science of the Total Environment ,
101550. 2024 , 949 : 174948.
[27] DHINAKARAN D, UDHAYA SANKAR S M, [37] WANG Z Y, YE X Y. Space, Time, and Situatio
LATHA B C, et al. Dam Management and Disaster nal Awareness in Natural Hazards: A Case Study of
Monitoring System Using IoT[C]//2023 Interna‑ Hurricane Sandy with Social Media Data[J]. Car‑
tional Conference on Sustainable Computing and Da‑ tography and Geographic Information Science,
ta Communication Systems (ICSCDS), Erode, In‑ 2019, 46(4): 334-346.
dia, 2023. [38] HUANG L D, SHI P P, ZHU H C. An Integrated
[28] RAMESH M V. Design, Development, and De‑ Urgency Evaluation Approach of Relief Demands for
ployment of a Wireless Sensor Network for Detec‑ Disasters Based on Social Media Data[J]. Interna‑
tion of Landslides[J]. Ad Hoc Networks, 2014, tional Journal of Disaster Risk Reduction, 2022,
13: 2-18. 80: 103208.
[29] VERA-ORTEGA P, VÁZQUEZ-MARTÍN R, [39] SINGH J P, DWIVEDI Y K, RANA N P, et al.
FERNANDEZ-LOZANO J J, et al. Enabling Re‑ Event Classification and Location Prediction from
mote Responder Bio-Signal Monitoring in a Cooper‑ Tweets During Disasters[J]. Annals of Operations
ative Human – Robot Architecture for Search and Research, 2019, 283(1): 737-757.
Rescue[J]. Sensors, 2023, 23(1): 49. [40] XING Z Y, ZHANG X D, ZAN X L, et al. Crowd‑
[30] FOROUGHNIA F, MACCHIARULO V, BERG sourced Social Media and Mobile Phone Signaling
L, et al. Quantitative Assessment of Earthquake-In‑ Data for Disaster Impact Assessment: A Case Study
duced Building Damage at Regional Scale Using Li‑ of the 8. 8 Jiuzhaigou Earthquake[J]. International
DAR Data[J]. International Journal of Disaster Journal of Disaster Risk Reduction, 2021, 58:
Risk Reduction, 2024, 106: 104403. 102200.
[31] JIANG N, LI H B, LI C J, et al. A Fusion Method [41] ZIAULLAH A W, OFLI F, IMRAN M. Monitor‑
Using Terrestrial Laser Scanning and Unmanned ing Critical Infrastructure Facilities During Disasters
Aerial Vehicle Photogrammetry for Landslide Defor‑ Using Large Language Models[EB/OL]. (2024-
mation Monitoring Under Complex Terrain Condi‑ 04-12). https://arxiv. org/abs/2404. 14432v1.
tions[J]. IEEE Transactions on Geoscience and Re‑ [42] SEEBERGER P , RIEDHAMMER K. Multi-
mote Sensing, 2022, 60: 4707214. Query Focused Disaster Summarization via Instruc‑
[32] HAO H Y, WANG Y. Leveraging Multimodal So‑ tion-Based Prompting [EB/OL]. (2024-09-08).
cial Media Data for Rapid Disaster Damage Assess‑ https://arxiv. org/abs/2402. 09008v1.
ment[J]. International Journal of Disaster Risk Re‑ [43] MADICHETTY S, M S. Classifying Informative
duction, 2020, 51: 101760. and Non-Informative Tweets from the Twitter by
[33] ZHOU B, ZOU L, MOSTAFAVI A, et al. Vic‑ Adapting Image Features During Disaster[J]. Multi‑
timFinder: Harvesting Rescue Requests in Disaster media Tools and Applications, 2020, 79(39):