Page 102 - 《武汉大学学报(信息科学版)》2025年第6期
P. 102
1124 武 汉 大 学 学 报 (信 息 科 学 版) 2025 年 6 月
28901-28923. toring, 2024, 2024(1): 4993972.
[44] ZHAI W, PENG Z R. Damage Assessment Using [54] LI Y, LI J, PEI J R, et al. Application of Non-
Google Street View: Evidence from Hurricane Mi‑ Contact Video Quantitative Measurement Method in
chael in Mexico Beach, Florida[J]. Applied Geog‑ Reservoir Bank Landslide Monitoring[J]. Frontiers
raphy, 2020, 123: 102252. in Earth Science, 2024, 12: 1378046.
[45] PI Y L, NATH N D, BEHZADAN A H. Detec‑ [55] ALAM F , OFLI F , IMRAN M , et al. Deep
tion and Semantic Segmentation of Disaster Damage Learning Benchmarks and Datasets for Social Me‑
in UAV Footage[J]. Journal of Computing in Civil dia Image Classification for Disaster Response
Engineering, 2021, 35(2): 04020063. [C]//IEEE/ACM International Conference on
[46] GUPTA R, GOODMAN B, PATEL N, et al. Advances in Social Networks Analysis and Mining
Creating XBD: A Dataset for Assessing Building (ASONAM), Hague, Netherlands, 2020.
Damage from Satellite Imagery[C]//CVPR Work‑ [56] ZHANG Y, ZONG R H, WANG D. A Hybrid
shops, Paris, France, 2016 Transfer Learning Approach to Migratable Disaster
[47] BAI Y B, HU J J, SU J H, et al. Pyramid Pooling Assessment in Social Media Sensing[C]//IEEE/
Module-Based Semi-Siamese Network : A Bench‑ ACM International Conference on Advances in So‑
mark Model for Assessing Building Damage from cial Networks Analysis and Mining (ASONAM),
xBD Satellite Imagery Datasets [J]. Remote Hague, Netherlands, 2020.
Sensing, 2020, 12(24): 4055. [57] Daly S, Thom J A. Mining and Classifying Image
[48] ZHENG Z , ZHONG Y F , WANG J J, et al. Posts on Social Media to Analyse Fires[C]//IS‑
Building Damage Assessment for Rapid Disaster Re‑ CRAM, Frankfurt, Germany, 2016.
sponse with a Deep Object-Based Semantic Change [58] VERNIER M, FARINOSI M, FORESTI A, et
Detection Framework: From Natural Disasters to al. Automatic Identification and Geo-Validation of
Man-Made Disasters[J]. Remote Sensing of Envi‑ Event-Related Images for Emergency Management
ronment, 2021, 265: 112636. [J]. Information, 2023, 14(2): 78.
[49] SHEN Y , ZHU S J, YANG T , et al. [59] AHMAD K, POGORELOV K, RIEGLER M, et
BDANet: Multiscale Convolutional Neural Net‑ al. Social Media and Satellites[J]. Multimedia
work with Cross-Directional Attention for Building Tools and Applications, 2019, 78(3): 2837-2875.
Damage Assessment from Satellite Images [J]. [60] CHEN Y J, ZHANG J, ZHOU A C , et al. A
IEEE Transactions on Geoscience and Remote Modeling Method for a Disaster Chain – Taking
Sensing , 2021 , 60 : 5402114. the Coal Mining Subsidence Chain as an Example
[50] GE P L, GOKON H, MEGURO K. A Review on [J]. Human and Ecological Risk Assessment: an
Synthetic Aperture Radar-Based Building Damage International Journal, 2018 , 24(5): 1388-1408.
Assessment in Disasters[J]. Remote Sensing of En‑ [61] HAN L N , ZHANG J Q , ZHANG Y C , et al.
vironment, 2020, 240: 111693. Hazard Assessment of Earthquake Disaster Chains
[51] 李聪妤, 刘家奇, 刘欣鑫, 等 . 适应复杂区域的时 Based on a Bayesian Network Model and ArcGIS
序 SAR 影 像 洪 水 监 测 与 分 析[J]. 遥 感 学 报 , [J]. ISPRS International Journal of Geo‑Informa‑
2024, 28(2): 346-358. tion , 2019 , 8(5): 210.
LI Congyu, LIU Jiaqi, LIU Xinxin, et al. Flood [62] 刘昭阁, 李向阳, 朱晓寒 . 融合多源空间数据的城
Monitoring and Analysis Based on Time-Series 市暴雨级联灾害情景态势转化推演方法[J]. 地球
SAR Image for Complex Area[J]. National Remote 信息科学学报, 2023, 25(12): 2329-2339.
Sensing Bulletin, 2024, 28(2): 346-358. LIU Zhaoge, LI Xiangyang, ZHU Xiaohan. A
[52] RAO A , JUNG J , SILVA V , et al. Earth‑ Method for Urban Rainstorm Cascading Disaster
quake Building Damage Detection Based on Syn‑ Scenario Converting Deduction by Integrating Multi-
thetic-Aperture-Radar Imagery and Machine source Spatial Data[J]. Journal of Geo‑Information
Learning[J]. Natural Hazards and Earth Sys‑ Science, 2023, 25(12): 2329-2339.
tem Sciences , 2023 , 23(2): 789-807. [63] SUN F, LI H B, CAI J M, et al. Examining Orga‑
[53] ZHOU J, HUO L S, HUANG C, et al. Feasibility nizational Collaboration and Resource Flows of Di‑
Study of Earthquake-Induced Damage Assessment saster Response System Based on a Time-Dynamic
for Structures by Utilizing Images from Surveillance Perspective[J]. International Journal of Disaster
Cameras[J]. Structural Control and Health Moni‑ Risk Reduction, 2024, 108: 104565.