Page 102 - 《武汉大学学报(信息科学版)》2025年第6期
P. 102

1124                            武 汉 大 学 学 报  (信 息 科 学 版)                        2025 年 6 月

                     28901-28923.                                    toring, 2024, 2024(1): 4993972.
                [44]  ZHAI  W,  PENG  Z  R.   Damage  Assessment  Using   [54]  LI  Y,  LI  J,  PEI  J  R,  et  al.   Application  of  Non-
                     Google  Street  View:  Evidence  from  Hurricane  Mi‑  Contact Video Quantitative Measurement Method in
                     chael in Mexico Beach, Florida[J].  Applied Geog‑  Reservoir  Bank  Landslide  Monitoring[J].   Frontiers
                     raphy, 2020, 123: 102252.                       in Earth Science, 2024, 12: 1378046.
                [45]  PI  Y  L,  NATH  N  D,  BEHZADAN  A  H.   Detec‑  [55]  ALAM  F ,  OFLI  F ,  IMRAN  M ,  et  al.   Deep
                     tion and Semantic Segmentation of Disaster Damage   Learning  Benchmarks  and  Datasets  for  Social  Me‑
                     in UAV Footage[J].  Journal of Computing in Civil   dia  Image  Classification  for  Disaster  Response
                     Engineering, 2021, 35(2): 04020063.             [C]//IEEE/ACM  International  Conference  on
                [46]  GUPTA  R,  GOODMAN  B,  PATEL  N,  et  al.     Advances  in  Social  Networks  Analysis  and  Mining
                     Creating  XBD:  A  Dataset  for  Assessing  Building   (ASONAM), Hague, Netherlands, 2020.
                     Damage  from  Satellite  Imagery[C]//CVPR  Work‑  [56]  ZHANG  Y,  ZONG  R  H,  WANG  D.   A  Hybrid
                     shops, Paris, France, 2016                      Transfer  Learning  Approach  to  Migratable  Disaster
                [47]  BAI Y B, HU J J, SU J H, et al.  Pyramid Pooling   Assessment  in  Social  Media  Sensing[C]//IEEE/
                     Module-Based  Semi-Siamese  Network :  A  Bench‑  ACM  International  Conference  on  Advances  in  So‑
                     mark  Model  for  Assessing  Building  Damage  from   cial  Networks  Analysis  and  Mining (ASONAM),
                     xBD  Satellite  Imagery  Datasets [J].   Remote   Hague, Netherlands, 2020.

                     Sensing, 2020, 12(24): 4055.               [57]  Daly  S,  Thom  J  A.   Mining  and  Classifying  Image
                [48]  ZHENG  Z ,  ZHONG  Y  F ,  WANG  J  J,  et  al.    Posts  on  Social  Media  to  Analyse  Fires[C]//IS‑
                     Building Damage Assessment for Rapid Disaster Re‑  CRAM, Frankfurt, Germany, 2016.
                     sponse with a Deep Object-Based Semantic Change   [58]  VERNIER  M,  FARINOSI  M,  FORESTI  A,  et
                     Detection  Framework:  From  Natural  Disasters  to   al.   Automatic  Identification  and  Geo-Validation  of
                     Man-Made  Disasters[J].   Remote  Sensing  of  Envi‑  Event-Related  Images  for  Emergency  Management
                     ronment, 2021, 265: 112636.                     [J].  Information, 2023, 14(2): 78.
                [49]  SHEN  Y ,  ZHU  S  J,  YANG  T ,  et  al.    [59]  AHMAD  K,  POGORELOV  K,  RIEGLER  M,  et
                     BDANet:  Multiscale  Convolutional  Neural  Net‑  al.   Social  Media  and  Satellites[J].   Multimedia
                     work  with  Cross-Directional  Attention  for  Building   Tools and Applications, 2019, 78(3): 2837-2875.
                     Damage  Assessment  from  Satellite  Images [J].    [60]  CHEN  Y  J,  ZHANG  J,  ZHOU  A  C ,  et  al.   A
                     IEEE  Transactions  on  Geoscience  and  Remote   Modeling  Method  for  a  Disaster  Chain – Taking
                     Sensing , 2021 , 60 : 5402114.                  the  Coal  Mining  Subsidence  Chain  as  an  Example
                [50]  GE P L, GOKON H, MEGURO K.  A Review on        [J].   Human  and  Ecological  Risk  Assessment:  an
                     Synthetic  Aperture  Radar-Based  Building  Damage   International Journal, 2018 , 24(5): 1388-1408.
                     Assessment in Disasters[J].  Remote Sensing of En‑  [61]  HAN  L  N ,  ZHANG  J  Q ,  ZHANG  Y  C ,  et  al.
                     vironment, 2020, 240: 111693.                   Hazard  Assessment  of  Earthquake  Disaster  Chains
                [51]  李聪妤, 刘家奇, 刘欣鑫, 等 .  适应复杂区域的时                   Based  on  a  Bayesian  Network  Model  and  ArcGIS
                     序 SAR 影 像 洪 水 监 测 与 分 析[J].   遥 感 学 报 ,         [J].   ISPRS  International  Journal  of  Geo‑Informa‑
                     2024, 28(2): 346-358.                           tion , 2019 , 8(5): 210.
                     LI  Congyu,  LIU  Jiaqi,  LIU  Xinxin,  et  al.   Flood   [62]  刘昭阁, 李向阳, 朱晓寒 .  融合多源空间数据的城
                     Monitoring  and  Analysis  Based  on  Time-Series   市暴雨级联灾害情景态势转化推演方法[J].  地球
                     SAR Image for Complex Area[J].  National Remote   信息科学学报, 2023, 25(12): 2329-2339.
                     Sensing Bulletin, 2024, 28(2): 346-358.         LIU  Zhaoge,  LI  Xiangyang,  ZHU  Xiaohan.   A
                [52]  RAO  A ,  JUNG  J ,  SILVA  V ,  et  al.   Earth‑  Method  for  Urban  Rainstorm  Cascading  Disaster
                     quake  Building  Damage  Detection  Based  on  Syn‑  Scenario Converting Deduction by Integrating Multi-
                     thetic-Aperture-Radar   Imagery   and   Machine   source Spatial Data[J].  Journal of Geo‑Information
                     Learning[J].   Natural  Hazards  and  Earth  Sys‑  Science, 2023, 25(12): 2329-2339.
                     tem  Sciences ,  2023 ,  23(2):  789-807.  [63]  SUN F, LI H B, CAI J M, et al.  Examining Orga‑
                [53]  ZHOU J, HUO L S, HUANG C, et al.  Feasibility   nizational  Collaboration  and  Resource  Flows  of  Di‑
                     Study  of  Earthquake-Induced  Damage  Assessment   saster  Response  System  Based  on  a  Time-Dynamic
                     for Structures by Utilizing Images from Surveillance   Perspective[J].   International  Journal  of  Disaster
                     Cameras[J].   Structural  Control  and  Health  Moni‑  Risk Reduction, 2024, 108: 104565.
   97   98   99   100   101   102   103   104   105   106   107