Page 379 - 《软件学报》2026年第1期
P. 379
376 软件学报 2026 年第 37 卷第 1 期
2023. 297–306. [doi: 10.1109/TPS-ISA58951.2023.00044]
[119] Yu L, Lu JY, Liu XL, Yang L, Zhang FJ, Ma JJ. PSCVFinder: A prompt-tuning based framework for smart contract vulnerability
detection. In: Proc. of the 34th Int’l Symp. on Software Reliability Engineering (ISSRE). Florence: IEEE, 2023. 556–567. [doi: 10.1109/
ISSRE59848.2023.00030]
[120] Ghaleb A, Pattabiraman K. How effective are smart contract analysis tools? Evaluating smart contract static analysis tools using bug
injection. In: Proc. of the 29th ACM SIGSOFT Int’l Symp. on Software Testing and Analysis. ACM, 2020. 415–427. [doi: 10.1145/
3395363.3397385]
[121] Ma W, Wu DY, Sun YQ, Wang TW, Liu SQ, Zhang J, Xue Y, Liu Y. Combining fine-tuning and LLM-based agents for intuitive smart
contract auditing with justifications. arXiv:2403.16073, 2024.
[122] Soud M, Nuutinen W, Liebel G. Soley: Identification and automated detection of logic vulnerabilities in ethereum smart contracts using
large language models. arXiv:2406.16244, 2024.
[123] Liu YH, Ott M, Goyal N, Du JF, Joshi M, Chen DQ, Levy O, Lewis M, Zettlemoyer L, Stoyanov V. RoBERTa: A robustly optimized
BERT pretraining approach. arXiv:1907.11692, 2019.
[124] Feng ZY, Guo DY, Tang DY, Duan N, Feng XC, Gong M, Shou LJ, Qin B, Liu T, Jiang DX, Zhou M. CodeBERT: A pre-trained model
for programming and natural languages. arXiv:2002.08155, 2020.
[125] Liu Y, Xue Y, Wu DY, Sun YQ, Li Y, Shi ML, Liu Y. PropertyGPT: LLM-driven formal verification of smart contracts through
retrieval-augmented property generation. arXiv:2405.02580, 2024.
[126] Shou CF, Liu J, Lu DD, Sen K. LLM4Fuzz: Guided fuzzing of smart contracts with large language models. arXiv:2401.11108, 2024.
[127] Sun JZ, Yin ZQ, Zhang HS, Chen X, Zheng W. Adversarial generation method for smart contract fuzz testing seeds guided by chain-
based LLM. Automated Software Engineering, 2025, 32(1): 12. [doi: 10.1007/s10515-024-00483-4]
[128] Zhang WQ, Zhang Z, Shi QK, Liu L, Wei LL, Liu YP, Zhang XY, Cheung SC. Nyx: Detecting exploitable front-running vulnerabilities
in smart contracts. In: Proc. of the 2024 IEEE Symp. on Security and Privacy (SP). San Francisco: IEEE, 2024. 2198–2216. [doi: 10.
1109/SP54263.2024.00146]
[129] Zhou LY, Qin KH, Torres CF, Le DV, Gervais A. High-frequency trading on decentralized on-chain exchanges. In: Proc. of the 2021
IEEE Symp. on Security and Privacy (SP). San Francisco: IEEE, 2021. 428–445. [doi: 10.1109/SP40001.2021.00027]
[130] Heimbach L, Wattenhofer R. Eliminating sandwich attacks with the help of game theory. In: Proc. of the 2022 ACM on Asia Conf. on
Computer and Communications Security. Nagasaki: ACM, 2022. 153–167. [doi: 10.1145/3488932.3517390]
[131] Li DZ, Zhang KJ, Wang L, Du G. A Geth-based real-time detection system for sandwich attacks in Ethereum. Discover Computing,
2024, 27(1): 11. [doi: 10.1007/s10791-024-09445-6]
[132] Xia Q, Huang ZR, Dou WS, Zhang YF, Zhang FJ, Liang G, Zuo C. Detecting flash loan based attacks in Ethereum. In: Proc. of the 43rd
Int’l Conf. on Distributed Computing Systems (ICDCS). Hong Kong: IEEE, 2023. 154–165. [doi: 10.1109/ICDCS57875.2023.00078]
[133] Chen ZY, Beillahi SM, Long F. FlashSyn: Flash loan attack synthesis via counter example driven approximation. In: Proc. of the 46th
Int’l Conf. on Software Engineering. Lisbon: ACM, 2024. 142. [doi: 10.1145/3597503.3639190]
[134] Li WK, Li XQ, Zhang YQ, Li ZW. DeFiTail: DeFi protocol inspection through cross-contract execution analysis. In: Proc. of the 2024
ACM on Web Conf. Singapore: ACM, 2024. 786–789. [doi: 10.1145/3589335.3651488]
[135] Wang B, Liu H, Liu C, Yang ZQ, Ren Q, Zheng HX, Lei H. BLOCKEYE: Hunting for DeFi attacks on blockchain. In: Proc. of the 43rd
Int’l Conf. on Software Engineering: Companion Proc. (ICSE-companion). Madrid: IEEE, 2021. 17–20. [doi: 10.1109/ICSE-
Companion52605.2021.00025]
[136] Wang SH, Wu CC, Liang YC, Hsieh LH, Hsiao HC. ProMutator: Detecting vulnerable price oracles in DeFi by mutated transactions. In:
Proc. of the 2021 IEEE European Symp. on Security and Privacy Workshops (EuroS&PW). Vienna: IEEE, 2021. 380–385. [doi: 10.
1109/EuroSPW54576.2021.00047]
[137] Deng X, Beillahi SM, Minwalla C, Du H, Veneris A, Long F. Safeguarding DeFi smart contracts against oracle deviations. In: Proc. of
the 46th Int’l Conf. on Software Engineering. Lisbon: ACM, 2024. 171. [doi: 10.1145/3597503.3639225]
[138] Arora S, Li YJ, Feng YB, Xu JH. SecPLF: Secure protocols for loanable funds against oracle manipulation attacks. In: Proc. of the 19th
ACM Asia Conf. on Computer and Communications Security. Singapore: ACM, 2024. 1394–1405. [doi: 10.1145/3634737.3637681]
[139] Wu SW, Yu Z, Wang DB, Zhou YJ, Wu L, Wang HY, Yuan XL. DeFiRanger: Detecting DeFi price manipulation attacks. IEEE Trans.
on Dependable and Secure Computing, 2024, 21(4): 4147–4161. [doi: 10.1109/TDSC.2023.3346888]
[140] Kong QP, Chen JC, Wang YL, Jiang ZG, Zheng ZB. Defitainter: Detecting price manipulation vulnerabilities in DeFi protocols. In:
Proc. of the 32nd ACM SIGSOFT Int’l Symp. on Software Testing and Analysis. Seattle: ACM, 2023. 1144–1156. [doi: 10.1145/
3597926.3598124]

