Page 375 - 《软件学报》2026年第1期
P. 375

372                                                        软件学报  2026  年第  37  卷第  1  期


                 [31]   So S, Lee M, Park J, Lee H, Oh H. VERISMART: A highly precise safety verifier for Ethereum smart contracts. In: Proc. of the 2020
                      IEEE Symp. on Security and Privacy (SP). San Francisco: IEEE, 2020. 1678–1694. [doi: 10.1109/SP40000.2020.00032]
                 [32]   Zhou EC, Hua S, Pi BF, Sun J, Nomura Y, Yamashita K, Kurihara H. Security assurance for smart contract. In: Proc. of the 9th IFIP Int’l
                      Conf. on New Technologies, Mobility and Security. Paris: IEEE, 2018. 1–5. [doi: 10.1109/NTMS.2018.8328743]
                 [33]   Qian P, Liu ZG, Yin YF, He QM. Cross-modality mutual learning for enhancing smart contract vulnerability detection on bytecode. In:
                      Proc. of the 2023 ACM Web Conf. Austin: ACM, 2023. 2220–2229. [doi: 10.1145/3543507.3583367]
                 [34]   Chen YZ, Sun ZY, Gong ZH, Hao D. Improving smart contract security with contrastive learning-based vulnerability detection. In: Proc.
                      of the 46th Int’l Conf. on Software Engineering. Lisbon: ACM, 2024. 156. [doi: 10.1145/3597503.3639173]
                 [35]   Jiang B, Liu Y, Chan WK. ContractFuzzer: Fuzzing smart contracts for vulnerability detection. In: Proc. of the 33rd Int’l Conf. on
                      Automated Software Engineering (ASE). Montpellier: ACM, 2018. 259–269. [doi: 10.1145/3238147.3238177]
                 [36]   Chen JC, Xia X, Lo D, Grundy J, Luo XP, Chen T. DefectChecker: Automated smart contract defect detection by analyzing EVM
                      bytecode. IEEE Trans. on Software Engineering, 2022, 48(7): 2189–2207. [doi: 10.1109/TSE.2021.3054928]
                 [37]   Zhou T, Liu K, Li L, Liu Z, Klein J, Bissyande TF. SmartGift: Learning to generate practical inputs for testing smart contracts. In: Proc.
                      of  the  2021  IEEE  Int’l  Conf.  on  Software  Maintenance  and  Evolution  (ICSME).  Luxembourg:  IEEE,  2021.  23–34.  [doi:  10.1109/
                      ICSME52107.2021.00009]
                 [38]   Liu ZG, Qian P, Yang JX, Liu LF, Xu XJ, He QM, Zhang XS. Rethinking smart contract fuzzing: Fuzzing with invocation ordering and
                      important  branch  revisiting.  IEEE  Trans.  on  Information  Forensics  and  Security,  2023,  18:  1237–1251.  [doi:  10.1109/TIFS.2023.
                      3237370]
                 [39]   Ji SY, Dong J, Wu J, Lu LS. A guided mutation strategy for smart contract fuzzing. In: Proc. of the 2023 IEEE Int’l Conf. on Software
                      Maintenance and Evolution (ICSME). Bogotá: IEEE, 2023. 282–292. [doi: 10.1109/ICSME58846.2023.00036]
                 [40]   Qian P, Wu HJ, Du ZR, Vural T, Rong DZ, Cao Z, Zhang L, Wang YB, Chen JH, He QM. MuFuzz: Sequence-aware mutation and seed
                      mask guidance for blockchain smart contract fuzzing. In: Proc. of the 40th Int’l Conf. on Data Engineering (ICDE). Utrecht: IEEE,
                      2024. 1972–1985. [doi: 10.1109/ICDE60146.2024.00158]
                 [41]   Holler S, Biewer S, Schneidewind C. HoRStify: Sound security analysis of smart contracts. In: Proc. of the 36th Computer Security
                      Foundations Symp. (CSF). Dubrovnik: IEEE, 2023. 245–260. [doi: 10.1109/CSF57540.2023.00023]
                 [42]   Luo  F,  Luo  RJ,  Chen  T,  Qiao  A,  He  ZY,  Song  SW,  Jiang  Y,  Li  SX.  SCVHunter:  Smart  contract  vulnerability  detection  based  on
                      heterogeneous graph attention network. In: Proc. of the 46th Int’l Conf. on Software Engineering. Lisbon: ACM, 2024. 170. [doi: 10.
                      1145/3597503.3639213]
                 [43]   Yu  XX,  Zhao  HY,  Hou  BT,  Ying  ZH,  Wu  B.  DeeSCVHunter:  A  deep  learning-based  framework  for  smart  contract  vulnerability
                      detection. In: Proc. of the 2021 Int’l Joint Conf. on Neural Networks (IJCNN). Shenzhen: IEEE, 2021. 1–8. [doi: 10.1109/IJCNN52387.
                      2021.9534324]
                 [44]   Wang W, Song JJ, Xu GQ, Li YD, Wang H, Su CH. ContractWard: Automated vulnerability detection models for Ethereum smart
                      contracts. IEEE Trans. on Network Science and Engineering, 2021, 8(2): 1133–1144. [doi: 10.1109/TNSE.2020.2968505]
                 [45]   Zhao XQ, Qu HP, Xu JL, Li S, Wang GG. AMSFuzz: An adaptive mutation schedule for fuzzing. Expert Systems with Applications,
                      2022, 208: 118162. [doi: 10.1016/j.eswa.2022.118162]
                 [46]   Wüstholz  V,  Christakis  M.  Harvey:  A  greybox  fuzzer  for  smart  contracts.  In:  Proc.  of  the  28th  ACM  Joint  Meeting  on  European
                      Software Engineering Conf. and Symp. on the Foundations of Software Engineering. ACM, 2020. 1398–1409. [doi: 10.1145/3368089.
                      3417064]
                 [47]   Tikhomirov S, Voskresenskaya E, Ivanitskiy I, Takhaviev R, Marchenko E, Alexandrov Y. SmartCheck: Static analysis of Ethereum
                      smart contracts. In: Proc. of the 1st Int’l Workshop on Emerging Trends in Software Engineering for Blockchain. Gothenburg: ACM,
                      2018. 9–16. [doi: 10.1145/3194113.3194115]
                 [48]   Liao ZQ, Hao SC, Nan YH, Zheng ZB. SmartState: Detecting state-reverting vulnerabilities in smart contracts via fine-grained state-
                      dependency  analysis.  In:  Proc.  of  the  32nd  ACM  SIGSOFT  Int’l  Symp.  on  Software  Testing  and  Analysis.  Seattle:  ACM,  2023.
                      980–991. [doi: 10.1145/3597926.3598111]
                 [49]   Cai J, Li B, Zhang T, Zhang JL, Sun XB. Fine-grained smart contract vulnerability detection by heterogeneous code feature learning and
                      automated dataset construction. Journal of Systems and Software, 2024, 209: 111919. [doi: 10.1016/j.jss.2023.111919]
                 [50]   Schneidewind C, Grishchenko I, Scherer M, Maffei M. eThor: Practical and provably sound static analysis of Ethereum smart contracts.
                      In: Proc. of the 2020 ACM SIGSAC Conf. on Computer and Communications Security. ACM, 2020. 621–640. [doi: 10.1145/3372297.
                      3417250]
                 [51]   Wang  ZX,  Chen  JC,  Wang  YL,  Zhang  Y,  Zhang  WZ,  Zheng  ZB.  Efficiently  detecting  reentrancy  vulnerabilities  in  complex  smart
   370   371   372   373   374   375   376   377   378   379   380