Page 375 - 《软件学报》2026年第1期
P. 375
372 软件学报 2026 年第 37 卷第 1 期
[31] So S, Lee M, Park J, Lee H, Oh H. VERISMART: A highly precise safety verifier for Ethereum smart contracts. In: Proc. of the 2020
IEEE Symp. on Security and Privacy (SP). San Francisco: IEEE, 2020. 1678–1694. [doi: 10.1109/SP40000.2020.00032]
[32] Zhou EC, Hua S, Pi BF, Sun J, Nomura Y, Yamashita K, Kurihara H. Security assurance for smart contract. In: Proc. of the 9th IFIP Int’l
Conf. on New Technologies, Mobility and Security. Paris: IEEE, 2018. 1–5. [doi: 10.1109/NTMS.2018.8328743]
[33] Qian P, Liu ZG, Yin YF, He QM. Cross-modality mutual learning for enhancing smart contract vulnerability detection on bytecode. In:
Proc. of the 2023 ACM Web Conf. Austin: ACM, 2023. 2220–2229. [doi: 10.1145/3543507.3583367]
[34] Chen YZ, Sun ZY, Gong ZH, Hao D. Improving smart contract security with contrastive learning-based vulnerability detection. In: Proc.
of the 46th Int’l Conf. on Software Engineering. Lisbon: ACM, 2024. 156. [doi: 10.1145/3597503.3639173]
[35] Jiang B, Liu Y, Chan WK. ContractFuzzer: Fuzzing smart contracts for vulnerability detection. In: Proc. of the 33rd Int’l Conf. on
Automated Software Engineering (ASE). Montpellier: ACM, 2018. 259–269. [doi: 10.1145/3238147.3238177]
[36] Chen JC, Xia X, Lo D, Grundy J, Luo XP, Chen T. DefectChecker: Automated smart contract defect detection by analyzing EVM
bytecode. IEEE Trans. on Software Engineering, 2022, 48(7): 2189–2207. [doi: 10.1109/TSE.2021.3054928]
[37] Zhou T, Liu K, Li L, Liu Z, Klein J, Bissyande TF. SmartGift: Learning to generate practical inputs for testing smart contracts. In: Proc.
of the 2021 IEEE Int’l Conf. on Software Maintenance and Evolution (ICSME). Luxembourg: IEEE, 2021. 23–34. [doi: 10.1109/
ICSME52107.2021.00009]
[38] Liu ZG, Qian P, Yang JX, Liu LF, Xu XJ, He QM, Zhang XS. Rethinking smart contract fuzzing: Fuzzing with invocation ordering and
important branch revisiting. IEEE Trans. on Information Forensics and Security, 2023, 18: 1237–1251. [doi: 10.1109/TIFS.2023.
3237370]
[39] Ji SY, Dong J, Wu J, Lu LS. A guided mutation strategy for smart contract fuzzing. In: Proc. of the 2023 IEEE Int’l Conf. on Software
Maintenance and Evolution (ICSME). Bogotá: IEEE, 2023. 282–292. [doi: 10.1109/ICSME58846.2023.00036]
[40] Qian P, Wu HJ, Du ZR, Vural T, Rong DZ, Cao Z, Zhang L, Wang YB, Chen JH, He QM. MuFuzz: Sequence-aware mutation and seed
mask guidance for blockchain smart contract fuzzing. In: Proc. of the 40th Int’l Conf. on Data Engineering (ICDE). Utrecht: IEEE,
2024. 1972–1985. [doi: 10.1109/ICDE60146.2024.00158]
[41] Holler S, Biewer S, Schneidewind C. HoRStify: Sound security analysis of smart contracts. In: Proc. of the 36th Computer Security
Foundations Symp. (CSF). Dubrovnik: IEEE, 2023. 245–260. [doi: 10.1109/CSF57540.2023.00023]
[42] Luo F, Luo RJ, Chen T, Qiao A, He ZY, Song SW, Jiang Y, Li SX. SCVHunter: Smart contract vulnerability detection based on
heterogeneous graph attention network. In: Proc. of the 46th Int’l Conf. on Software Engineering. Lisbon: ACM, 2024. 170. [doi: 10.
1145/3597503.3639213]
[43] Yu XX, Zhao HY, Hou BT, Ying ZH, Wu B. DeeSCVHunter: A deep learning-based framework for smart contract vulnerability
detection. In: Proc. of the 2021 Int’l Joint Conf. on Neural Networks (IJCNN). Shenzhen: IEEE, 2021. 1–8. [doi: 10.1109/IJCNN52387.
2021.9534324]
[44] Wang W, Song JJ, Xu GQ, Li YD, Wang H, Su CH. ContractWard: Automated vulnerability detection models for Ethereum smart
contracts. IEEE Trans. on Network Science and Engineering, 2021, 8(2): 1133–1144. [doi: 10.1109/TNSE.2020.2968505]
[45] Zhao XQ, Qu HP, Xu JL, Li S, Wang GG. AMSFuzz: An adaptive mutation schedule for fuzzing. Expert Systems with Applications,
2022, 208: 118162. [doi: 10.1016/j.eswa.2022.118162]
[46] Wüstholz V, Christakis M. Harvey: A greybox fuzzer for smart contracts. In: Proc. of the 28th ACM Joint Meeting on European
Software Engineering Conf. and Symp. on the Foundations of Software Engineering. ACM, 2020. 1398–1409. [doi: 10.1145/3368089.
3417064]
[47] Tikhomirov S, Voskresenskaya E, Ivanitskiy I, Takhaviev R, Marchenko E, Alexandrov Y. SmartCheck: Static analysis of Ethereum
smart contracts. In: Proc. of the 1st Int’l Workshop on Emerging Trends in Software Engineering for Blockchain. Gothenburg: ACM,
2018. 9–16. [doi: 10.1145/3194113.3194115]
[48] Liao ZQ, Hao SC, Nan YH, Zheng ZB. SmartState: Detecting state-reverting vulnerabilities in smart contracts via fine-grained state-
dependency analysis. In: Proc. of the 32nd ACM SIGSOFT Int’l Symp. on Software Testing and Analysis. Seattle: ACM, 2023.
980–991. [doi: 10.1145/3597926.3598111]
[49] Cai J, Li B, Zhang T, Zhang JL, Sun XB. Fine-grained smart contract vulnerability detection by heterogeneous code feature learning and
automated dataset construction. Journal of Systems and Software, 2024, 209: 111919. [doi: 10.1016/j.jss.2023.111919]
[50] Schneidewind C, Grishchenko I, Scherer M, Maffei M. eThor: Practical and provably sound static analysis of Ethereum smart contracts.
In: Proc. of the 2020 ACM SIGSAC Conf. on Computer and Communications Security. ACM, 2020. 621–640. [doi: 10.1145/3372297.
3417250]
[51] Wang ZX, Chen JC, Wang YL, Zhang Y, Zhang WZ, Zheng ZB. Efficiently detecting reentrancy vulnerabilities in complex smart

