Page 376 - 《软件学报》2026年第1期
P. 376

揭晚晴 等: 智能合约与      DeFi 协议漏洞检测技术综述                                                373


                      contracts. In: Proc. of the 2024 ACM Software Engineering. New York: ACM, 2024. 161–181. [doi: 10.1145/3643734]
                 [52]   Wang HJ, Liu Y, Li Y, Lin SW, Artho C, Ma L, Liu Y. Oracle-supported dynamic exploit generation for smart contracts. IEEE Trans.
                      on Dependable and Secure Computing, 2022, 19(3): 1795–1809. [doi: 10.1109/TDSC.2020.3037332]
                 [53]   Rodler M, Paaßen D, Li WT, Bernhard L, Holz T, Karame G, Davi L. EF↯CF: High performance smart contract fuzzing for exploit
                      generation.  In:  Proc.  of  the  8th  European  Symp.  on  Security  and  Privacy  (EuroS&P).  Delft:  IEEE,  2023.  449–471.  [doi:  10.1109/
                      EuroSP57164.2023.00034]
                 [54]   Wang SJ, Pei KX, Yang JF. SmartInv: Multimodal learning for smart contract invariant inference. In: Proc. of the 2024 IEEE Symp. on
                      Security and Privacy (SP). San Francisco: IEEE, 2024. 2217–2235. [doi: 10.1109/SP54263.2024.00126]
                 [55]   Bose P, Das D, Chen YJ, Feng Y, Kruegel C, Vigna G. SAILFISH: Vetting smart contract state-inconsistency bugs in seconds. In: Proc.
                      of the 2022 IEEE Symp. on Security and Privacy (SP). San Francisco: IEEE, 2022. 161–178. [doi: 10.1109/SP46214.2022.9833721]
                 [56]   Zhou SF, Yang ZM, Xiang J, Cao YZ, Yang M, Zhang Y. An ever-evolving game: Evaluation of real-world attacks and defenses in
                      Ethereum ecosystem. In: Proc. of the 29th USENIX Security Symp. USENIX Association, 2020. 2793–2809.
                 [57]   He  JX,  Balunović  M,  Ambroladze  N,  Tsankov  P,  Vechev  M.  Learning  to  fuzz  from  symbolic  execution  with  application  to  smart
                      contracts. In: Proc. of the 2019 ACM SIGSAC Conf. on Computer and Communications Security. London: ACM, 2019. 531–548. [doi:
                      10.1145/3319535.3363230]
                 [58]   Feng Y, Torlak E, Bodik R. Summary-based symbolic evaluation for smart contracts. In: Proc. of the 35th IEEE/ACM Int’l Conf. on
                      Automated Software Engineering (ASE). ACM, 2020. 1141–1152. [doi: 10.1145/3324884.3416646]
                 [59]   Kalra S, Goel S, Dhawan M, Sharma S. ZEUS: Analyzing safety of smart contracts. In: Proc. of the 2018 Network and Distributed
                      System Security Symp. San Diego, 2018. 1–12. [doi: 10.14722/ndss.2018.23082]
                 [60]   Brent L, Jurisevic A, Kong M, Liu E, Gauthier F, Gramoli V, Holz R, Scholz B. Vandal: A scalable security analysis framework for
                      smart contracts. arXiv:1809.03981, 2018.
                 [61]   Zhang XL, Sun WX, Xu ZC, Cheng HB, Cai CJ, Cui HL, Li Q. EVM-Shield: In-contract state access control for fast vulnerability
                      detection and prevention. IEEE Trans. on Information Forensics and Security, 2024, 19: 2517–2532. [doi: 10.1109/TIFS.2024.3349852]
                 [62]   Gao B, Wei QS, Liu Y, Goh RSM. Unveiling the potential of ChatGPT in detecting machine unauditable bugs in smart contracts: A
                      preliminary evaluation and categorization. In: Proc. of the 2024 IEEE Conf. on Artificial Intelligence (CAI). Singapore: IEEE, 2024.
                      1481–1486. [doi: 10.1109/CAI59869.2024.00266]
                 [63]   So S, Hong S, Oh H. SmarTest: Effectively hunting vulnerable transaction sequences in smart contracts through language model-guided
                      symbolic execution. In: Proc. of the 30th USENIX Security Symp. USENIX Association, 2021. 1361–1378.
                 [64]   Zhang MY, Zhang XK, Zhang YQ, Lin ZQ. TXSPECTOR: Uncovering attacks in Ethereum from transactions. In: Proc. of the 29th
                      USENIX Security Symp. USENIX Association, 2020. 2775–2792.
                 [65]   Permenev A, Dimitrov D, Tsankov P, Drachsler-Cohen D, Vechev M. VerX: Safety verification of smart contracts. In: Proc. of the 2020
                      IEEE Symp. on Security and Privacy (SP). San Francisco: IEEE, 2020. 1661–1677. [doi: 10.1109/SP40000.2020.00024]
                 [66]   Choi J, Kim D, Kim S, Grieco G, Groce A, Cha SK. SMARTIAN: Enhancing smart contract fuzzing with static and dynamic data-flow
                      analyses. In: Proc. of the 36th Int’l Conf. on Automated Software Engineering (ASE). Melbourne: IEEE, 2021. 227–239. [doi: 10.1109/
                      ASE51524.2021.9678888]
                 [67]   Torres CF, Iannillo AK, Gervais A, State R. ConFuzzius: A data dependency-aware hybrid fuzzer for smart contracts. In: Proc. of the
                      2021 IEEE European Symp. on Security and Privacy. Vienna: IEEE, 2021. 103–119. [doi: 10.1109/EuroSP51992.2021.00018]
                 [68]   Tsankov P, Dan A, Drachsler-Cohen D, Gervais A, Bünzli F, Vechev M. Securify: Practical security analysis of smart contracts. In:
                      Proc.  of  the  2018  ACM  SIGSAC  Conf.  on  Computer  and  Communications  Security.  Toronto:  ACM,  2018.  67–82.  [doi:  10.1145/
                      3243734.3243780]
                 [69]   Stephens J, Ferles K, Mariano B, Lahiri S, Dillig I. SmartPulse: Automated checking of temporal properties in smart contracts. In: Proc.
                      of the 2021 IEEE Symp. on Security and Privacy (SP). San Francisco: IEEE, 2021. 555–571. [doi: 10.1109/SP40001.2021.00085]
                 [70]   Chen T, Cao R, Li T, Luo XP, Gu GF, Zhang YF, Liao Z, Zhu H, Chen G, He ZY, Tang YX, Lin XD, Zhang XS. SODA: A generic
                      online detection framework for smart contracts. In: Proc. of the NDSS Symp. 2020. San Diego, 2020. 1–17. [doi: 10.14722/ndss.2020.
                      24449]
                 [71]   Durieux T, Ferreira JF, Abreu R, Cruz P. Empirical review of automated analysis tools on 47, 587 Ethereum smart contracts. In: Proc. of
                      the 42nd Int’l Conf. on Software Engineering. Seoul: ACM, 2020. 530–541. [doi: 10.1145/3377811.3380364]
                 [72]   Grishchenko I, Maffei M, Schneidewind C. A semantic framework for the security analysis of Ethereum smart contracts. In: Proc. of the
                      7th Int’l Conf. on Principles of Security and Trust. Thessaloniki: Springer, 2018. 243–269. [doi: 10.1007/978-3-319-89722-6_10]
                 [73]   Grech N, Brent L, Scholz B, Smaragdakis Y. Gigahorse: Thorough, declarative decompilation of smart contracts. In: Proc. of the 41st
   371   372   373   374   375   376   377   378   379   380   381