Page 301 - 《软件学报》2026年第1期
P. 301
298 软件学报 2026 年第 37 卷第 1 期
3681954.3682030]
[69] Cao Z, Qin T, Liu TY, Tsai MF, Li H. Learning to rank: From pairwise approach to listwise approach. In: Proc. of the 24th Int’l Conf.
on Machine Learning. Corvalis: ACM, 2007. 129–136. [doi: 10.1145/1273496.1273513]
[70] Liu TY. Learning to rank for information retrieval. Foundations and Trends® in Information Retrieval, 2009, 3(3): 225–331. [doi: 10.
1561/1500000016]
[71] Moerkotte G. Cardinality estimation for having-clauses. Proc. of the VLDB Endowment, 2024, 18(1): 28–41. [doi: 10.14778/3696435.
3696438]
[72] Kwon S, Jung W, Shim K. Cardinality estimation of approximate substring queries using deep learning. Proc. of the VLDB Endowment,
2022, 15(11): 3145–3157. [doi: 10.14778/3551793.3551859]
[73] Aytimur M, Reiner S, Wörteler L, Chondrogiannis T, Grossniklaus M. LPLM: A neural language model for cardinality estimation of
like-queries. Proc. of the ACM on Management of Data, 2024, 2(1): 54. [doi: 10.1145/3639309]
[74] Meng ZZ, Cao X, Cong G. Selectivity estimation for queries containing predicates over set-valued attributes. Proc. of the ACM on
Management of Data, 2023, 1(4): 261. [doi: 10.1145/3626755]
[75] van de Water R, Ventura F, Kaoudi Z, Quiané-Ruiz JA, Markl V. Farming your ML-based query optimizer’s food. In: Proc. of the 38th
IEEE Int’l Conf. on Data Engineering. Kuala Lumpur: IEEE, 2022. 3186–3189. [doi: 10.1109/ICDE53745.2022.00294]
[76] Zhang JT, Zhang C, Li GL, Chai CL. PACE: Poisoning attacks on learned cardinality estimation. Proc. of the ACM on Management of
Data, 2024, 2(1): 37. [doi: 10.1145/3639292]
[77] Zhou XH, Chai CL, Li GL, Sun J. Database meets artificial intelligence: A survey. IEEE Trans. on Knowledge and Data Engineering,
2020, 34(3): 1096–1116. [doi: 10.1109/TKDE.2020.2994641]
[78] Ioannidis YE, Kang YC. Left-deep vs. bushy trees: An analysis of strategy spaces and its implications for query optimization. In: Proc.
of the 1991 ACM SIGMOD Int’l Conf. on Management of Data. Denver: ACM, 1991. 168–177. [doi: 10.1145/115790.115813]
[79] Waas F, Pellenkoft A. Join order selection (good enough is easy). In: Proc. of the 17th British National Conf. on Databases: Advances in
Databases. Exeter: Springer, 2000. 51–67. [doi: 10.1007/3-540-45033-5_5]
[80] Krishnan S, Yang ZH, Goldberg K, Hellerstein J, Stoica I. Learning to optimize join queries with deep reinforcement learning.
arXiv:1808.03196, 2019.
[81] Heitz J, Stockinger K. Join query optimization with deep reinforcement learning algorithms. arXiv:1911.11689, 2019.
[82] Zhou WQ, Zhan SY, Dai B, Guo L. SOAR: A learned join order selector with graph attention mechanism. In: Proc. of the 2022 Int’l
Joint Conf. on Neural Networks (IJCNN). Padua: IEEE, 2022. 1–8. [doi: 10.1109/IJCNN55064.2022.9892450]
[83] Chen J, Ye GY, Zhao Y, Liu SC, Deng LW, Chen X, Zhou R, Zheng K. Efficient join order selection learning with graph-based
representation. In: Proc. of the 28th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. Washington: ACM, 2022.
97–107. [doi: 10.1145/3534678.3539303]
[84] Izenov Y, Datta A, Tsan B, Rusu F. Sub-optimal join order identification with L1-error. Proc. of the ACM on Management of Data,
2024, 2(1): 17. [doi: 10.1145/3639272]
[85] Wang JX, Trummer I, Kara A, Olteanu D. ADOPT: Adaptively optimizing attribute orders for worst-case optimal join algorithms via
reinforcement learning. Proc. of the VLDB Endowment, 2023, 16(11): 2805–2817. [doi: 10.14778/3611479.3611489]
[86] Ghosh A, Parikh J, Sengar VS, Haritsa JR. Plan selection based on query clustering. In: Proc. of the 28th Int’l Conf. on Very Large Data
Bases. Hong Kong: VLDB Endowment, 2002. 179–190. [doi: 10.1016/B978-155860869-6/50024-X]
[87] Robinson N, McIlraith S, Toman D. Cost-based query optimization via AI planning. In: Proc. of the 28th AAAI Conf. on Artificial
Intelligence. Québec City: AAAI, 2014. 2344–2351. [doi: 10.1609/aaai.v28i1.9045]
[88] Marcus R, Papaemmanouil O. Towards a hands-free query optimizer through deep learning. arXiv:1809.10212, 2018.
[89] Yang ZH, Chiang WL, Luan SF, Mittal G, Luo M, Stoica I. Balsa: Learning a query optimizer without expert demonstrations. In: Proc.
of the 2022 Int’l Conf. on Management of Data. Philadelphia: ACM, 2022. 931–944. [doi: 10.1145/3514221.3517885]
[90] Chen TY, Gao J, Chen HD, Tu YF. LOGER: A learned optimizer towards generating efficient and robust query execution plans. Proc.
of the VLDB Endowment, 2023, 16(7): 1777–1789. [doi: 10.14778/3587136.3587150]
[91] Chen TY, Gao J, Tu YF, Xu M. GLO: Towards generalized learned query optimization. In: Proc. of the 40th IEEE Int’l Conf. on Data
Engineering. Utrecht: IEEE, 2024. 4843–4855. [doi: 10.1109/ICDE60146.2024.00368]
[92] Yu X, Chai CL, Li GL, Liu JB. Cost-based or learning-based? A hybrid query optimizer for query plan selection. Proc. of the VLDB
Endowment, 2022, 15(13): 3924–3936. [doi: 10.14778/3565838.3565846]

