Page 301 - 《软件学报》2026年第1期
P. 301

298                                                        软件学报  2026  年第  37  卷第  1  期


                      3681954.3682030]
                 [69]   Cao Z, Qin T, Liu TY, Tsai MF, Li H. Learning to rank: From pairwise approach to listwise approach. In: Proc. of the 24th Int’l Conf.
                      on Machine Learning. Corvalis: ACM, 2007. 129–136. [doi: 10.1145/1273496.1273513]
                 [70]   Liu TY. Learning to rank for information retrieval. Foundations and Trends® in Information Retrieval, 2009, 3(3): 225–331. [doi: 10.
                      1561/1500000016]
                 [71]   Moerkotte G. Cardinality estimation for having-clauses. Proc. of the VLDB Endowment, 2024, 18(1): 28–41. [doi: 10.14778/3696435.
                      3696438]
                 [72]   Kwon S, Jung W, Shim K. Cardinality estimation of approximate substring queries using deep learning. Proc. of the VLDB Endowment,
                      2022, 15(11): 3145–3157. [doi: 10.14778/3551793.3551859]
                 [73]   Aytimur M, Reiner S, Wörteler L, Chondrogiannis T, Grossniklaus M. LPLM: A neural language model for cardinality estimation of
                      like-queries. Proc. of the ACM on Management of Data, 2024, 2(1): 54. [doi: 10.1145/3639309]
                 [74]   Meng ZZ, Cao X, Cong G. Selectivity estimation for queries containing predicates over set-valued attributes. Proc. of the ACM on
                      Management of Data, 2023, 1(4): 261. [doi: 10.1145/3626755]
                 [75]   van de Water R, Ventura F, Kaoudi Z, Quiané-Ruiz JA, Markl V. Farming your ML-based query optimizer’s food. In: Proc. of the 38th
                      IEEE Int’l Conf. on Data Engineering. Kuala Lumpur: IEEE, 2022. 3186–3189. [doi: 10.1109/ICDE53745.2022.00294]
                 [76]   Zhang JT, Zhang C, Li GL, Chai CL. PACE: Poisoning attacks on learned cardinality estimation. Proc. of the ACM on Management of
                      Data, 2024, 2(1): 37. [doi: 10.1145/3639292]
                 [77]   Zhou XH, Chai CL, Li GL, Sun J. Database meets artificial intelligence: A survey. IEEE Trans. on Knowledge and Data Engineering,
                      2020, 34(3): 1096–1116. [doi: 10.1109/TKDE.2020.2994641]
                 [78]   Ioannidis YE, Kang YC. Left-deep vs. bushy trees: An analysis of strategy spaces and its implications for query optimization. In: Proc.
                      of the 1991 ACM SIGMOD Int’l Conf. on Management of Data. Denver: ACM, 1991. 168–177. [doi: 10.1145/115790.115813]
                 [79]   Waas F, Pellenkoft A. Join order selection (good enough is easy). In: Proc. of the 17th British National Conf. on Databases: Advances in
                      Databases. Exeter: Springer, 2000. 51–67. [doi: 10.1007/3-540-45033-5_5]
                 [80]   Krishnan  S,  Yang  ZH,  Goldberg  K,  Hellerstein  J,  Stoica  I.  Learning  to  optimize  join  queries  with  deep  reinforcement  learning.
                      arXiv:1808.03196, 2019.
                 [81]   Heitz J, Stockinger K. Join query optimization with deep reinforcement learning algorithms. arXiv:1911.11689, 2019.
                 [82]   Zhou WQ, Zhan SY, Dai B, Guo L. SOAR: A learned join order selector with graph attention mechanism. In: Proc. of the 2022 Int’l
                      Joint Conf. on Neural Networks (IJCNN). Padua: IEEE, 2022. 1–8. [doi: 10.1109/IJCNN55064.2022.9892450]
                 [83]   Chen  J,  Ye  GY,  Zhao  Y,  Liu  SC,  Deng  LW,  Chen  X,  Zhou  R,  Zheng  K.  Efficient  join  order  selection  learning  with  graph-based
                      representation.  In:  Proc.  of  the  28th  ACM  SIGKDD  Conf.  on  Knowledge  Discovery  and  Data  Mining.  Washington:  ACM,  2022.
                      97–107. [doi: 10.1145/3534678.3539303]
                 [84]   Izenov Y, Datta A, Tsan B, Rusu F. Sub-optimal join order identification with L1-error. Proc. of the ACM on Management of Data,
                      2024, 2(1): 17. [doi: 10.1145/3639272]
                 [85]   Wang JX, Trummer I, Kara A, Olteanu D. ADOPT: Adaptively optimizing attribute orders for worst-case optimal join algorithms via
                      reinforcement learning. Proc. of the VLDB Endowment, 2023, 16(11): 2805–2817. [doi: 10.14778/3611479.3611489]
                 [86]   Ghosh A, Parikh J, Sengar VS, Haritsa JR. Plan selection based on query clustering. In: Proc. of the 28th Int’l Conf. on Very Large Data
                      Bases. Hong Kong: VLDB Endowment, 2002. 179–190. [doi: 10.1016/B978-155860869-6/50024-X]
                 [87]   Robinson N, McIlraith S, Toman D. Cost-based query optimization via AI planning. In: Proc. of the 28th AAAI Conf. on Artificial
                      Intelligence. Québec City: AAAI, 2014. 2344–2351. [doi: 10.1609/aaai.v28i1.9045]
                 [88]   Marcus R, Papaemmanouil O. Towards a hands-free query optimizer through deep learning. arXiv:1809.10212, 2018.
                 [89]   Yang ZH, Chiang WL, Luan SF, Mittal G, Luo M, Stoica I. Balsa: Learning a query optimizer without expert demonstrations. In: Proc.
                      of the 2022 Int’l Conf. on Management of Data. Philadelphia: ACM, 2022. 931–944. [doi: 10.1145/3514221.3517885]
                 [90]   Chen TY, Gao J, Chen HD, Tu YF. LOGER: A learned optimizer towards generating efficient and robust query execution plans. Proc.
                      of the VLDB Endowment, 2023, 16(7): 1777–1789. [doi: 10.14778/3587136.3587150]
                 [91]   Chen TY, Gao J, Tu YF, Xu M. GLO: Towards generalized learned query optimization. In: Proc. of the 40th IEEE Int’l Conf. on Data
                      Engineering. Utrecht: IEEE, 2024. 4843–4855. [doi: 10.1109/ICDE60146.2024.00368]
                 [92]   Yu X, Chai CL, Li GL, Liu JB. Cost-based or learning-based? A hybrid query optimizer for query plan selection. Proc. of the VLDB
                      Endowment, 2022, 15(13): 3924–3936. [doi: 10.14778/3565838.3565846]
   296   297   298   299   300   301   302   303   304   305   306