Page 300 - 《软件学报》2026年第1期
P. 300

何家豪 等: 智能查询优化算法研究综述                                                              297


                      ICDE.2009.130]
                 [46]   Li JX, König AC, Narasayya V, Chaudhuri S. Robust estimation of resource consumption for SQL queries using statistical techniques.
                      Proc. of the VLDB Endowment, 2012, 5(11): 1555–1566. [doi: 10.14778/2350229.2350269]
                 [47]   Marcus  R,  Papaemmanouil  O.  Plan-structured  deep  neural  network  models  for  query  performance  prediction.  Proc.  of  the  VLDB
                      Endowment, 2019, 12(11): 1733–1746. [doi: 10.14778/3342263.3342646]
                 [48]   Zhu XD, Sobhani P, Guo HY. Long short-term memory over recursive structures. In: Proc. of the 32nd Int’l Conf. on Machine Learning.
                      Lille: JMLR.org, 2015. 1604–1612.
                 [49]   Mou LL, Li G, Zhang L, Wang T, Jin Z. Convolutional neural networks over tree structures for programming language processing. In:
                      Proc. of the 30th AAAI Conf. on Artificial Intelligence. Phoenix: AAAI, 2016. 1287–1293. [doi: 10.1609/aaai.v30i1.10139]
                 [50]   Li Y, Wang LW, Wang S, Sun Y, Peng ZY. A resource-aware deep cost model for big data query processing. In: Proc. of the 38th IEEE
                      Int’l Conf. on Data Engineering. Kuala: IEEE, 2022. 885–897. [doi: 10.1109/ICDE53745.2022.00071]
                 [51]   Elman JL. Finding structure in time. Cognitive Science, 1990, 14(2): 179–211. [doi: 10.1207/s15516709cog1402_1]
                 [52]   Hochreiter  S,  Schmidhuber  J.  Long  short-term  memory.  Neural  Computation,  1997,  9(8):  1735–1780.  [doi:  10.1162/neco.1997.9.8.
                      1735]
                 [53]   Tai KS, Socher R, Manning CD. Improved semantic representations from tree-structured long short-term memory networks. In: Proc. of
                      the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th Int’l Joint Conf. on Natural Language Processing
                      (Vol. 1: Long Papers). Beijing: Association for Computational Linguistics, 2015. 1556–1566. [doi: 10.3115/v1/P15-1150]
                 [54]   LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc. of the IEEE, 1998, 86(11):
                      2278–2324. [doi: 10.1109/5.726791]
                 [55]   Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. In: Proc. of the
                      31st Int’l Conf. on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 6000–6010.
                 [56]   Yuan HT, Li GL, Feng L, Sun J, Han Y. Automatic view generation with deep learning and reinforcement learning. In: Proc. of the 36th
                      IEEE Int’l Conf. on Data Engineering. Dallas: IEEE, 2020. 1501–1512. [doi: 10.1109/ICDE48307.2020.00133]
                 [57]   Liu J, Dong WQ, Zhou QQ, Li D. Fauce: Fast and accurate deep ensembles with uncertainty for cardinality estimation. Proc. of the
                      VLDB Endowment, 2021, 14(11): 1950–1963. [doi: 10.14778/3476249.3476254]
                 [58]   Ding  BL,  Das  S,  Marcus  R,  Wu  WT,  Chaudhuri  S,  Narasayya  VR.  AI  meets  AI:  Leveraging  query  executions  to  improve  index
                      recommendations.  In:  Proc.  of  the  2019  Int’l  Conf.  on  Management  of  Data.  Amsterdam:  ACM,  2019.  1241–1258.  [doi: 10.1145/
                      3299869.3324957]
                 [59]   Marcus R, Papaemmanouil O. Deep reinforcement learning for join order enumeration. In: Proc. of the 1st Int’l Workshop on Exploiting
                      Artificial Intelligence Techniques for Data Management. Houston: ACM, 2018. 3. [doi: 10.1145/3211954.3211957]
                 [60]   Yu X, Li GL, Chai CL, Tang N. Reinforcement learning with tree-LSTM for join order selection. In: Proc. of the 36th IEEE Int’l Conf.
                      on Data Engineering. Dallas: IEEE, 2020. 1297–1308. [doi: 10.1109/ICDE48307.2020.00116]
                 [61]   Marcus R, Negi P, Mao HZ, Tatbul N, Alizadeh M, Kraska T. Bao: Making learned query optimization practical. In: Proc. of the 2021
                      Int’l Conf. on Management of Data. ACM, 2021. 1275–1288. [doi: 10.1145/3448016.3452838]
                 [62]   Zeng TJ, Lan JW, Ma JH, Wei WQ, Zhu R, Zhou YL, Li PF, Ding BL, Lian DF, Wei ZW, Zhou JR. PRICE: A pretrained model for
                      cross-database cardinality estimation. Proc. of the VLDB Endowment, 2024, 18(3): 637–650. [doi: 10.14778/3712221.3712231]
                 [63]   Han YX, Wu ZN, Wu PZ, Zhu R, Yang JY, Tan LW, Zeng K, Cong G, Qin YZ, Pfadler A, Qian ZP, Zhou JR, Li JN, Cui B. Cardinality
                      estimation in DBMS: A comprehensive benchmark evaluation. Proc. of the VLDB Endowment, 2021, 15(4): 752–765. [doi: 10.14778/
                      3503585.3503586]
                 [64]   Transaction processing performance council (TPC). TPC-H Version 2 and Version 3. 2021. http://www.tpc.org/tpch/
                 [65]   Zhu  R,  Chen  W,  Ding  BL,  Chen  XG,  Pfadler  A,  Wu  ZN,  Zhou  JR.  Lero:  A  learning-to-rank  query  optimizer.  Proc.  of  the  VLDB
                      Endowment, 2023, 16(6): 1466–1479. [doi: 10.14778/3583140.3583160]
                 [66]   Chen XG, Zhu R, Ding BL, Wang SB, Zhou JR. Lero: Applying learning-to-rank in query optimizer. The VLDB Journal, 2024, 33(5):
                      1307–1331. [doi: 10.1007/s00778-024-00850-3]
                 [67]   Xu  XH,  Zhao  ZB,  Zhang  TY,  Kang  R,  Sun  LM,  Chen  JJ.  COOOL:  A  learning-to-rank  approach  for  SQL  hint  recommendations.
                      arXiv:2304.04407, 2023.
                 [68]   Lim WS, Ma L, Zhang W, Butrovich M, Arch S, Pavlo A. Hit the gym: Accelerating query execution to efficiently bootstrap behavior
                      models  for  self-driving  database  management  systems.  Proc.  of  the  VLDB  Endowment,  2024,  17(11):  3680–3693.  [doi:  10.14778/
   295   296   297   298   299   300   301   302   303   304   305