Page 299 - 《软件学报》2026年第1期
P. 299

296                                                        软件学报  2026  年第  37  卷第  1  期


                      Conf. on Management of Data. Portland: ACM, 2020. 1017–1033. [doi: 10.1145/3318464.3389727]
                 [23]   Hasan  S,  Thirumuruganathan  S,  Augustine  J,  Koudas  N,  Das  G.  Deep  learning  models  for  selectivity  estimation  of  multi-attribute
                      queries. In: Proc. of the 2020 ACM SIGMOD Int’l Conf. on Management of Data. Portland: ACM, 2020. 1035–1050. [doi: 10.1145/
                      3318464.3389741]
                 [24]   Yang  ZH,  Liang  E,  Kamsetty  A,  Wu  CG,  Duan  Y,  Chen  X,  Abbeel  P,  Hellerstein  JM,  Krishnan  S,  Stoica  I.  Deep  unsupervised
                      cardinality estimation. Proc. of the VLDB Endowment, 2019, 13(3): 279–292. [doi: 10.14778/3368289.3368294]
                 [25]   Yang ZH, Kamsetty A, Luan SF, Liang E, Duan Y, Chen X, Stoica I. NeuroCard: One cardinality estimator for all tables. Proc. of the
                      VLDB Endowment, 2020, 14(1): 61–73. [doi: 10.14778/3421424.3421432]
                 [26]   Zhu R, Wu ZN, Han YX, Zeng K, Pfadler A, Qian ZP, Zhou JR, Cui B. FLAT: Fast, lightweight and accurate method for cardinality
                      estimation. Proc. of the VLDB Endowment, 2021, 14(9): 1489–1502. [doi: 10.14778/3461535.3461539]
                 [27]   Kim  K,  Lee  S,  Kim  I,  Han  WS.  ASM:  Harmonizing  autoregressive  model,  sampling,  and  multi-dimensional  statistics  merging  for
                      cardinality estimation. Proc. of the ACM on Management of Data, 2024, 2(1): 45. [doi: 10.1145/3639300]
                 [28]   Lee S, Kim K, Han WS. ASM in action: Fast and practical learned cardinality estimation. In: Companion of the 2024 Int’l Conf. on
                      Management of Data. Santiago: ACM, 2024. 460–463. [doi: 10.1145/3626246.3654728]
                 [29]   Gjurovski D, Davitkova A, Michel S. Grid-AR: A grid-based booster for learned cardinality estimation and range joins. arXiv:2410.
                      07895, 2024.
                 [30]   Li  YZ,  Liu  XL,  Wang  HZ,  Zhang  KX,  Wang  ZX.  Updateable  data-driven  cardinality  estimator  with  bounded  Q-error.  arXiv:2408.
                      17209, 2024.
                 [31]   Liu QY, Shen YY, Chen L. LHist: Towards learning multi-dimensional histogram for massive spatial data. In: Proc. of the 37th IEEE Int’l
                      Conf. on Data Engineering. Chania: IEEE, 2021. 1188–1199. [doi: 10.1109/ICDE51399.2021.00107]
                 [32]   Halford M, Saint-Pierre P, Morvan F. An approach based on Bayesian networks for query selectivity estimation. In: Proc. of the 24th Int’l
                      Conf. on Database Systems for Advanced Applications. Chiang Mai: Springer, 2019. 3–19. [doi: 10.1007/978-3-030-18579-4_1]
                 [33]   Kipf A, Freitag M, Vorona D, Boncz P, Neumann T, Kemper A. Estimating filtered group-by queries is hard: Deep learning to the
                      rescue. In: Proc. of the 1st Int’l Workshop on Applied AI for Database Systems and Applications. Los Angeles, 2019.
                 [34]   Akdere M, Çetintemel U, Riondato M, Upfal E, Zdonik SB. Learning-based query performance modeling and prediction. In: Proc. of the
                      28th IEEE Int’l Conf. on Data Engineering. Arlington: IEEE, 2012. 390–401. [doi: 10.1109/ICDE.2012.64]
                 [35]   Dutt A, Wang C, Nazi A, Kandula S, Narasayya V, Chaudhuri S. Selectivity estimation for range predicates using lightweight models.
                      Proc. of the VLDB Endowment, 2019, 12(9): 1044–1057. [doi: 10.14778/3329772.3329780]
                 [36]   Zhao  Y,  Cong  G,  Shi  JC,  Miao  CY.  QueryFormer:  A  tree  Transformer  model  for  query  plan  representation.  Proc.  of  the  VLDB
                      Endowment, 2022, 15(8): 1658–1670. [doi: 10.14778/3529337.3529349]
                 [37]   Li PF, Wei WQ, Zhu R, Ding BL, Zhou JR, Lu H. ALECE: An attention-based learned cardinality estimator for SPJ queries on dynamic
                      workloads. Proc. of the VLDB Endowment, 2023, 17(2): 197–210. [doi: 10.14778/3626292.3626302]
                 [38]   Sun J, Li GL. An end-to-end learning-based cost estimator. Proc. of the VLDB Endowment, 2019, 13(3): 307–319. [doi: 10.14778/
                      3368289.3368296]
                 [39]   Marcus R, Negi P, Mao HZ, Zhang C, Alizadeh M, Kraska T, Papaemmanouil O, Tatbul N. Neo: A learned query optimizer. Proc. of the
                      VLDB Endowment, 2019, 12(11): 1705–1718. [doi: 10.14778/3342263.3342644]
                 [40]   Sun  LM,  Ji  T,  Li  CP,  Chen  H.  DeepO:  A  learned  query  optimizer.  In:  Proc.  of  the  2022  Int’l  Conf.  on  Management  of  Data.
                      Philadelphia: ACM, 2022. 2421–2424. [doi: 10.1145/3514221.3520167]
                 [41]   Kang JKZ, Gaurav, Tan SY, Cheng F, Sun SX, He BS. Efficient deep learning pipelines for accurate cost estimations over large scale
                      query workload. In: Proc. of the 2021 Int’l Conf. on Management of Data. ACM, 2021. 1014–1022. [doi: 10.1145/3448016.3457546]
                 [42]   Negi P, Wu ZN, Kipf A, Tatbul N, Marcus R, Madden S, Kraska T, Alizadeh M. Robust query driven cardinality estimation under
                      changing workloads. Proc. of the VLDB Endowment, 2023, 16(6): 1520–1533. [doi: 10.14778/3583140.3583164]
                 [43]   Wang ZL, Zeng QX, Wang N, Lu HW, Zhang Y. CEDA: Learned cardinality estimation with domain adaptation. Proc. of the VLDB
                      Endowment, 2023, 16(12): 3934–3937. [doi: 10.14778/3611540.3611589]
                 [44]   Akdere M, Cetintemel U, Riondato M, Upfal E, Zdonik S. The case for predictive database systems: Opportunities and challenges.
                      CIDR. In: Proc. of the 5th Biennial Conf. on Innovative Data Systems Research. Asilomar, 2011. 167–174.
                 [45]   Ganapathi A, Kuno H, Dayal U, Wiener JL, Fox A, Jordan M, Patterson D. Predicting multiple metrics for queries: Better decisions
                      enabled by machine learning. In: Proc. of the 25th IEEE Int’l Conf. on Data Engineering. Shanghai: IEEE, 2009. 592–603. [doi: 10.1109/
   294   295   296   297   298   299   300   301   302   303   304