Page 282 - 《软件学报》2026年第1期
P. 282

软件学报 ISSN 1000-9825, CODEN RUXUEW                                        E-mail: jos@iscas.ac.cn
                 2026,37(1):279−300 [doi: 10.13328/j.cnki.jos.007449] [CSTR: 32375.14.jos.007449]  http://www.jos.org.cn
                 ©中国科学院软件研究所版权所有.                                                          Tel: +86-10-62562563



                                                   *
                 智能查询优化算法研究综述

                 何家豪  1,3 ,    王嘉辰  1,3 ,    王    晓  1,3 ,    张喜盈  2,3 ,    李翠平  1,3 ,    陈    红  1,2


                  (数据工程与知识工程教育部重点实验室          (中国人民大学), 北京 100872)
                 1
                  (数据库与商务智能教育部工程研究中心          (中国人民大学), 北京 100872)
                 2
                 3
                  (中国人民大学 信息学院, 北京 100872)
                 通信作者: 李翠平, E-mail: licuiping@ruc.edu.cn

                 摘 要: 查询优化是数据库系统中至关重要的环节, 查询优化器通过找出一条查询语句对应的最佳查询计划来减
                 少查询执行的代价. 传统优化器依赖固定规则或简单启发式算法加工并筛选候选计划. 然而随着实际应用中关系
                 模式和查询逐渐复杂, 传统的查询优化器已经难以满足应用需求. 智能查询优化算法将机器学习技术应用到查询
                 优化领域, 通过学习查询计划与复杂关系模式的特征来协助传统优化器完成查询优化. 此类算法在代价模型、连
                 接优化、计划生成和查询改写等方面都提出了创新有效的解决方案. 梳理上述                          4  类智能查询优化算法近年来的研
                 究成果和发展脉络, 并对智能查询优化未来的研究方向进行展望, 希望研究者可以全面了解智能查询优化算法的
                 研究现状, 以助于其后续科研工作的开展.
                 关键词: 查询优化; 人工智能; 强化学习; 数据库系统; 数据管理
                 中图法分类号: TP311
                 中文引用格式: 何家豪, 王嘉辰, 王晓, 张喜盈, 李翠平, 陈红. 智能查询优化算法研究综述. 软件学报, 2026, 37(1): 279–300. http://
                 www.jos.org.cn/1000-9825/7449.htm
                 英文引用格式: He JH, Wang JC, Wang X, Zhang XY, Li CP, Chen H. Survey on Learned Query Optimization Algorithms. Ruan Jian
                 Xue Bao/Journal of Software, 2026, 37(1): 279–300 (in Chinese). http://www.jos.org.cn/1000-9825/7449.htm

                 Survey on Learned Query Optimization Algorithms

                                        1,3
                         1,3
                                                    1,3
                                                                              1,3
                                                                   2,3
                 HE Jia-Hao , WANG Jia-Chen , WANG Xiao , ZHANG Xi-Ying , LI Cui-Ping , CHEN Hong 1,2
                 1
                 (Key  Laboratory  of  Data  Engineering  and  Knowledge  Engineering  of  the  Ministry  of  Education  (Renmin  University  of  China),  Beijing
                  100872, China)
                 2
                 (Engineering  Research  Center  of  Database  and  Business  Intelligence  of  the  Ministry  of  Education  (Renmin  University  of  China),  Beijing
                  100872, China)
                 3
                 (School of Information, Renmin University of China, Beijing 100872, China)
                 Abstract:  Query  optimization  is  a  critical  component  in  database  systems,  where  execution  costs  are  minimized  by  identifying  the  most
                 efficient  query  execution  plan.  Traditional  query  optimizers  typically  rely  on  fixed  rules  or  simple  heuristic  algorithms  to  refine  or  select
                 candidate  plans.  However,  with  the  growing  complexity  of  relational  schemas  and  queries  in  real-world  applications,  such  optimizers
                 struggle to meet the demands of modern applications. Learned query optimization algorithms integrate machine learning techniques into the
                 optimization  process.  They  capture  features  of  query  plans  and  complex  schemas  to  assist  traditional  optimizers.  These  algorithms  offer
                 innovative  and  effective  solutions  in  areas  such  as  cost  modeling,  join  optimization,  plan  generation,  and  query  rewriting.  This  study
                 reviews  recent  achievements  and  developments  in  four  main  categories  of  learned  query  optimization  algorithms.  Future  research  directions
                 are also discussed, aiming to provide a comprehensive understanding of the current state of research and to support further investigation in
                 this field.
                 Key words:  query optimization; artificial intelligence; reinforcement learning; database system; data management


                 *    基金项目: 国家重点研发计划  (2023YFB4503600); 国家自然科学基金  (U23A20299, U24B20144, 62172424, 62276270, 62322214)
                  收稿时间: 2025-01-13; 修改时间: 2025-03-16; 采用时间: 2025-04-20; jos 在线出版时间: 2025-08-20
                  CNKI 网络首发时间: 2025-08-20
   277   278   279   280   281   282   283   284   285   286   287