Page 278 - 《软件学报》2026年第1期
P. 278
向清平 等: 分布式数据库高可用研究进展 275
Texas at Austin, 2011.
[8] Gupta A, Shute J. High-availability at massive scale: Building Google’s data infrastructure for Ads. In: Proc. of the 2019 Int’l Workshops
on Real-time Business Intelligence and Analytics. Springer, 2019. 63–81. [doi: 10.1007/978-3-030-24124-7_5]
[9] Gray J, Reuter A. Transaction Processing: Concepts and Techniques. San Francisco: Morgan Kaufmann Publishers Inc., 1992.
[10] Shute J, Vingralek R, Samwel B, Handy B, Whipkey C, Rollins E, Oancea M, Littlefield K, Menestrina D, Ellner S, Cieslewicz J, Rae I,
Stancescu T, Apte H. F1: A distributed SQL database that scales. Proc. of the VLDB Endowment, 2013, 6(11): 1068–1079. [doi: 10.
14778/2536222.2536232]
[11] Corbett JC, Dean J, Epstein M, Fikes A, Frost C, Furman JJ, Ghemawat S, Gubarev A, Heiser C, Hochschild P, Hsieh W, Kanthak S,
Kogan E, Li HY, Lloyd A, Melnik S, Mwaura D, Nagle D, Quinlan S, Rao R, Rolig L, Saito Y, Szymaniak M, Taylor C, Wang R,
Woodford D. Spanner: Google’s globally distributed database. ACM Trans. on Computer Systems, 2013, 31(3): 8. [doi: 10.1145/
2491245]
[12] Lamport L. Paxos made simple. ACM SIGACT News, 2001, 32(4): 18–25.
[13] Ananthanarayanan R, Basker V, Das S, Gupta A, Jiang HF, Qiu TH, Reznichenko A, Ryabkov D, Singh M, Venkataraman S. Photon:
Fault-tolerant and scalable joining of continuous data streams. In: Proc. of the 2013 ACM SIGMOD Int’l Conf. on Management of Data.
New York: ACM, 2013. 577–588.
[14] Gupta A, Yang F, Govig J, Kirsch A, Chan K, Lai K, Wu S, Dhoot SG, Kumar AR, Agiwal A, Bhansali S, Hong MS, Cameron J, Siddiqi
M, Jones D, Shute J, Gubarev A, Venkataraman S, Agrawal D. Mesa: Geo-replicated, near real-time, scalable data warehousing. Proc. of
the VLDB Endowment, 2014, 7(12): 1259–1270. [doi: 10.14778/2732977.2732999]
[15] Shrestha R. High availability and performance of database in the cloud. In: Proc. of the 7th Int’l Conf. on Cloud Computing and Services
Science. Porto: SciTePress—Science and Technology Publications, 2017. 413–420. [doi: 10.5220/0006294604130420]
[16] Depoutovitch A, Chen C, Larson PA, Ng J, Lin S, Xiong GZ, Lee P, Boctor E, Ren SM, Wu LD, Zhang YC, Sun C. Taurus MM:
Bringing multi-master to the cloud. Proc. of the VLDB Endowment, 2023, 16(12): 3488–3500. [doi: 10.14778/3611540.3611542]
[17] Yang XJ, Zhang YQ, Chen H, Li FF, Wang B, Fang J, Sun C, Wang YH. PolarDB-MP: A multi-primary cloud-native database via
disaggregated shared memory. In: Companion of the 2024 Int’l Conf. on Management of Data. Santiago AA Chile: ACM, 2024. 295–308.
[doi: 10.1145/3626246.3653377]
[18] Dragojević A, Narayanan D, Nightingale EB, Renzelmann M, Shamis A, Badam A, Castro M. No compromises: Distributed transactions
with consistency, availability, and performance. In: Proc. of the 25th Symp. on Operating Systems Principles. Monterey: ACM, 2015.
54–70. [doi: 10.1145/2815400.2815425]
[19] Kim J, Salem K, Daudjee K, Aboulnaga A, Pan X. Database high availability using SHADOW systems. In: Proc. of the 6th ACM Symp.
on Cloud Computing. ACM, 2015. 209–221. [doi: 10.1145/2806777.2806841]
[20] Kalia A, Kaminsky M, Andersen DG. FaSST: Fast, scalable and simple distributed transactions with two-sided (RDMA) datagram RPCs.
In: Proc. of the 12th USENIX Conf. on Operating Systems Design and Implementation. Savannah: USENIX Association, 2016. 185–201.
[21] Wang TZ, Johnson R, Pandis I. Query fresh: Log shipping on steroids. Proc. of the VLDB Endowment, 2017, 11(4): 406–419. [doi: 10.
1145/3186728.3164137]
[22] Kemme B, Alonso G. Database replication: A tale of research across communities. Proc. of the VLDB Endowment, 2010, 3(1–2): 5–12.
[doi: 10.14778/1920841.1920847]
[23] Lahiri T, Neimat MA, Folkman S. Oracle TimesTen: An in-memory database for enterprise applications. IEEE Data Engineering Bulletin,
2013, 36(2): 6–13.
[24] Mistry R, Misner S. Introducing Microsoft SQL Server 2014. Redmond: Microsoft Press, 2014.
[25] Gray J, Helland P, O’Neil P, Shasha D. The dangers of replication and a solution. In: Proc. of the 1996 ACM SIGMOD Int’l Conf. on
Management of Data. Montreal: ACM Press, 1996. 173–182. [doi: 10.1145/233269.233330]
[26] Kallman R, Kimura H, Natkins J, Pavlo A, Rasin A, Zdonik S, Jones EPC, Madden S, Stonebraker M, Zhang Y, Hugg J, Abadi DJ. H-
Store: A high-performance, distributed main memory transaction processing system. Proc. of the VLDB Endowment, 2008, 1(2):
1496–1499. [doi: 10.14778/1454159.1454211]
[27] Stonebraker M, Weisberg A. The voltDB main memory DBMS. IEEE Data Engineering Bulletin, 2013, 36(2): 21–27.
[28] Thomson A, Diamond T, Weng SC, Ren K, Shao P, Abadi DJ. Calvin: Fast distributed transactions for partitioned database systems. In:
Proc. of the 2012 ACM SIGMOD Int’l Conf. on Management of Data. Scottsdale: ACM, 2012. 1–12. [doi: 10.1145/2213836.2213838]
[29] Wu CG, Faleiro JM, Lin YH, Hellerstein JM. Anna: A KVS for any scale. IEEE Trans. on Knowledge and Data Engineering, 2021,
33(2): 344–358. [doi: 10.1109/TKDE.2019.2898401]
[30] Zhang ZH, Hu HQ, Zhou X, Wang J. Starry: Multi-master transaction processing on semi-leader architecture. Proc. of the VLDB

