Page 279 - 《软件学报》2026年第1期
P. 279
276 软件学报 2026 年第 37 卷第 1 期
Endowment, 2022, 16(1): 77–89. [doi: 10.14778/3561261.3561268]
[31] Ren K, Li D, Abadi DJ. SLOG: Serializable, low-latency, geo-replicated transactions. Proc. of the VLDB Endowment, 2019, 12(11):
1747–1761. [doi: 10.14778/3342263.3342647]
[32] Zamanian E, Yu XY, Stonebraker M, Kraska T. Rethinking database high availability with RDMA networks. Proc. of the VLDB
Endowment, 2019, 12(11): 1637–1650. [doi: 10.14778/3342263.3342639]
[33] Kumari P, Kaur P. A survey of fault tolerance in cloud computing. Journal of King Saud University —Computer and Information
Sciences, 2021, 33(10): 1159–1176. [doi: 10.1016/j.jksuci.2018.09.021]
[34] Ma SN, Ma T, Chen K, Wu YW. A survey of storage systems in the RDMA era. IEEE Trans. on Parallel and Distributed Systems, 2022,
33(12): 4395–4409. [doi: 10.1109/TPDS.2022.3188656]
[35] Ahmed S, Nahiduzzaman M, Islam T, Bappy FH, Zaman TS, Hasan R. FASTEN: Towards a fault-tolerant and storage efficient cloud:
Balancing between replication and deduplication. In: Proc. of the 21st IEEE Consumer Communications & Networking Conf. Las Vegas:
IEEE, 2024. 44–50. [doi: 10.1109/CCNC51664.2024.10454894]
[36] Zheng JJ, Lin Q, Xu JT, Wei C, Zeng CW, Yang PG, Zhang YF. PaxosStore: High-availability storage made practical in WeChat. Proc.
of the VLDB Endowment, 2017, 10(12): 1730–1741. [doi: 10.14778/3137765.3137778]
[37] Cao W, Liu ZJ, Wang P, Chen S, Zhu CF, Zheng S, Wang YH, Ma GQ. PolarFS: An ultra-low latency and failure resilient distributed file
system for shared storage cloud database. Proc. of the VLDB Endowment, 2018, 11(12): 1849–1862. [doi: 10.14778/3229863.3229872]
[38] Wang JY, Li TL, Song HZ, Yang XJ, Zhou WC, Li FF, Yan BY, Wu QQ, Liang YK, Ying CJ, Wang YJ, Chen BK, Cai C, Ruan YB,
Weng XY, Chen SB, Yin L, Yang CZ, Cai X, Xing HY, Yu NL, Chen XF, Huang DP, Sun JL. PolarDB-IMCI: A cloud-native HTAP
database system at Alibaba. Proc. of the ACM on Management of Data, 2023, 1(2): 199. [doi: 10.1145/3589785]
[39] Akkoorath DD, Tomsic AZ, Bravo M, Li ZM, Crain T, Bieniusa A, Preguiça N, Shapiro M. Cure: Strong semantics meets high
availability and low latency. In: Proc. of the 36th IEEE Int’l Conf. on Distributed Computing Systems. Nara: IEEE, 2016. 405–414.
[doi: 10.1109/ICDCS.2016.98]
[40] Zhou WX, Peng Q, Zhang ZJ, Zhang YF, Ren Y, Li SH, Fu G, Cui YL, Li Q, Wu CY, Han SJ, Wang SY, Li GL, Yu G. GeoGauss:
Strongly consistent and light-coordinated OLTP for geo-replicated SQL database. Proc. of the ACM on Management of Data, 2023, 1(1):
62. [doi: 10.1145/3588916]
[41] Tamimi AA, Dawood R, Sadaqa L. Disaster recovery techniques in cloud computing. In: Proc. of the 2019 IEEE Jordan Int’l Joint Conf.
on Electrical Engineering and Information Technology. Amman: IEEE, 2019. 845–850. [doi: 10.1109/JEEIT.2019.8717450]
[42] Abualkishik AZ, Alwan AA, Gulzar Y. Disaster recovery in cloud computing systems: An overview. Int’l Journal of Advanced Computer
Science and Applications, 2020, 11(9): 702–710. [doi: 10.14569/IJACSA.2020.0110984]
[43] Pokharel M, Lee S, Park JS. Disaster recovery for system architecture using cloud computing. In: Proc. of the 10th IEEE/IPSJ Int’l Symp.
on Applications and the Internet. Seoul: IEEE, 2010. 304–307. [doi: 10.1109/SAINT.2010.23]
[44] Sengupta S, Annervaz KM. Planning for optimal multi-site data distribution for disaster recovery. In: Proc. of the 8th Int’l Workshop on
Economics of Grids, Clouds, Systems, and Services. Paphos: Springer, 2012. 161–172. [doi: 10.1007/978-3-642-28675-9_12]
[45] Saquib Z, Tyagi V, Bokare S, Dongawe S, Dwivedi M, Dwivedi J. A new approach to disaster recovery as a service over cloud for
database system. In: Proc. of the 15th Int’l Conf. on Advanced Computing Technologies. Rajampet: IEEE, 2013. 1–6. [doi: 10.1109/
ICACT.2013.6914704]
[46] Lenk A. Cloud standby deployment: A model-driven deployment method for disaster recovery in the cloud. In: Proc. of the 8th IEEE Int’l
Conf. on Cloud Computing. New York: IEEE, 2015. 933–940. [doi: 10.1109/CLOUD.2015.127]
[47] Bibartiu O, Dürr F, Rothermel K, Ottenwälder B, Grau A. Availability analysis of redundant and replicated cloud services with Bayesian
networks. Quality and Reliability Engineering Int’l, 2024, 40(1): 561–584. [doi: 10.1002/qre.3414]
[48] Bailis P, Fekete A, Ghodsi A, Hellerstein JM, Stoica I. HAT, not CAP: Towards highly available transactions. In: Proc. of the 14th
USENIX Conf. on Hot Topics in Operating Systems. USENIX Association, 2013. 24.
[49] Cao Y, Fan WF, Ou WJ, Xie R, Zhao WY. Transaction scheduling: From conflicts to runtime conflicts. Proc. of the ACM on
Management of Data, 2023, 1(1): 26. [doi: 10.1145/3588706]
[50] An S, Cao Y, Zhao WY. Competitive consistent caching for transactions. In: Proc. of the 38th IEEE Int’l Conf. on Data Engineering.
Kuala Lumpur: IEEE, 2022. 2154–2167. [doi: 10.1109/ICDE53745.2022.00207]
[51] Qadah TM, Sadoghi M. Highly available queue-oriented speculative transaction processing. arXiv:2107.11378, 2021.
[52] Prasaad G, Cheung A, Suciu D. Handling highly contended OLTP workloads using fast dynamic partitioning. In: Proc. of the 2020 ACM
SIGMOD Int’l Conf. on Management of Data. Portland: ACM, 2020. 527–542. [doi: 10.1145/3318464.3389764]
[53] Shahid MA, Islam N, Alam MM, Su’ud MM, Musa S. A comprehensive study of load balancing approaches in the cloud computing

