Page 201 - 《软件学报》2026年第1期
P. 201
198 软件学报 2026 年第 37 卷第 1 期
Knowledge Discovery from Data, 2022, 16(6): 105. [doi: 10.1145/3516367]
[55] Yao X, Gao JY, Xu CS. Self-supervised graph contrastive learning for video question answering. Ruan Jian Xue Bao/Journal of Software,
2023, 34(5): 2083–2100 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6775.htm [doi: 10.13328/j.cnki.jos.006775]
[56] Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. arXiv:1609.02907, 2017.
[57] Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y. Graph attention networks. arXiv:1710.10903, 2018.
[58] Xie YC, Xu Z, Zhang JT, Wang ZY, Ji SW. Self-supervised learning of graph neural networks: A unified review. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 2023, 45(2): 2412–2429. [doi: 10.1109/TPAMI.2022.3170559]
[59] Liu YX, Jin M, Pan SR, Zhou C, Zheng Y, Xia F, Yu P. Graph self-supervised learning: A survey. IEEE Trans. on Knowledge and Data
Engineering, 2023, 35(6): 5879–5900. [doi: 10.1109/TKDE.2022.3172903]
[60] Xu KYL, Hu WH, Leskovec J, Jegelka S. How powerful are graph neural networks? arXiv:1810.00826, 2019.
[61] Chen MR, Huang C, Xia LH, Wei W, Xu Y, Luo RH. Heterogeneous graph contrastive learning for recommendation. In: Proc. of the
16th ACM Int’l Conf. on Web Search and Data Mining. Singapore: ACM, 2023. 544–552. [doi: 10.1145/3539597.3570484]
[62] Chen B, Zhang J, Zhang XK, Dong YX, Song J, Zhang P, Xu KB, Kharlamov E, Tang J. GCCAD: Graph contrastive coding for anomaly
detection. IEEE Trans. on Knowledge and Data Engineering, 2023, 35(8): 8037–8051. [doi: 10.1109/TKDE.2022.3200459]
[63] Zheng Y, Jin M, Liu YX, Chi LH, Phan KT, Chen YPP. Generative and contrastive self-supervised learning for graph anomaly detection.
IEEE Trans. on Knowledge and Data Engineering, 2023, 35(12): 12220–12233. [doi: 10.1109/TKDE.2021.3119326]
[64] Jin M, Liu YX, Zheng Y, Chi LH, Li YF, Pan SR. ANEMONE: Graph anomaly detection with multi-scale contrastive learning. In: Proc.
of the 30th ACM Int’l Conf. on Information & Knowledge Management. ACM, 2021. 3122–3126. [doi: 10.1145/3459637.3482057]
[65] Chopra S, Hadsell R, LeCun Y. Learning a similarity metric discriminatively, with application to face verification. In: Proc. of the 2005
IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. San Diego: IEEE, 2005. 539–546. [doi: 10.1109/CVPR.2005.
202]
[66] Kiros R, Zhu YK, Salakhutdinov RR, Zemel RS, Torralba A, Urtasun R, Fidler S. Skip-thought vectors. In: Proc. of the 29th Int’l Conf.
on Neural Information Processing Systems. Montreal: MIT Press, 2015. 3294–3302.
[67] Le Q, Mikolov T. Distributed representations of sentences and documents. In: Proc. of the 31st Int’l Conf. on Machine Learning. 2014.
II-1188–II-1196.
[68] Chen T, Kornblith S, Norouzi M, Hinton G. A simple framework for contrastive learning of visual representations. In: Proc. of the 37th
Int’l Conf. on Machine Learning. 2020. 1597–1607.
[69] Tian YL, Sun C, Poole B, Krishnan D, Schmid C, Isola P. What makes for good views for contrastive learning? In: Proc. of the 34th Int’l
Conf. on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2020. 6827–6839.
[70] Li HY, Wang X, Zhang ZW, Yuan ZH, Li H, Zhu WW. Disentangled contrastive learning on graphs. In: Proc. of the 35th Int’l Conf. on
Neural Information Processing Systems. Curran Associates Inc., 2021. 21872–21884.
[71] Hassani K, Khasahmadi AH. Contrastive multi-view representation learning on graphs. In: Proc. of the 37th Int’l Conf. on Machine
Learning. 2020. 4116–4126.
[72] Zhu YQ, Xu YC, Yu F, Liu Q, Wu S, Wang L. Graph contrastive learning with adaptive augmentation. In: Proc. of the 2021 Web Conf.
Ljubljana: ACM, 2021. 2069–2080. [doi: 10.1145/3442381.3449802]
[73] Thakoor S, Tallec C, Azar MG, Azabou M, Dyer EL, Munos R, Veličković P, Valko M. Large-scale representation learning on graphs via
bootstrapping. arXiv:2102.06514, 2023.
[74] Qiu JZ, Chen QB, Dong YX, Zhang J, Yang HX, Ding M, Wang KS, Tang J. GCC: Graph contrastive coding for graph neural network
pre-training. In: Proc. of the 26th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. ACM, 2020. 1150–1160. [doi:
10.1145/3394486.3403168]
[75] You YN, Chen TL, Shen Y, Wang ZY. Graph contrastive learning automated. arXiv:2106.07594, 2021.
[76] Xu DK, Cheng W, Luo DS, Chen HF, Zhang X. InfoGCL: Information-aware graph contrastive learning. In: Proc. of the 35th Int’l Conf.
on Neural Information Processing Systems. Curran Associates Inc., 2021. 30414–30425.
[77] Peng Z, Huang WB, Luo MN, Zheng QH, Rong Y, Xu TY, Huang JZ. Graph representation learning via graphical mutual information
maximization. In: Proc. of the 2020 Web Conf. Taipei: ACM, 2020. 259–270. [doi: 10.1145/3366423.3380112]
[78] Sun QY, Li JX, Peng H, Wu J, Ning YX, Yu PS, He LF. SUGAR: Subgraph neural network with reinforcement pooling and self-
supervised mutual information mechanism. In: Proc. of the 2021 Web Conf. Ljubljana: ACM, 2021. 2081–2091. [doi: 10.1145/3442381.
3449822]
[79] Mo YJ, Peng L, Xu J, Shi XS, Zhu XF. Simple unsupervised graph representation learning. In: Proc. of the 36th AAAI Conf. on Artificial
Intelligence. AAAI, 2022. 7797–7805. [doi: 10.1609/aaai.v36i7.20748]

