Page 201 - 《软件学报》2026年第1期
P. 201

198                                                        软件学报  2026  年第  37  卷第  1  期


                     Knowledge Discovery from Data, 2022, 16(6): 105. [doi: 10.1145/3516367]
                 [55]   Yao X, Gao JY, Xu CS. Self-supervised graph contrastive learning for video question answering. Ruan Jian Xue Bao/Journal of Software,
                     2023, 34(5): 2083–2100 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6775.htm [doi: 10.13328/j.cnki.jos.006775]
                 [56]   Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. arXiv:1609.02907, 2017.
                 [57]   Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y. Graph attention networks. arXiv:1710.10903, 2018.
                 [58]   Xie YC, Xu Z, Zhang JT, Wang ZY, Ji SW. Self-supervised learning of graph neural networks: A unified review. IEEE Trans. on Pattern
                     Analysis and Machine Intelligence, 2023, 45(2): 2412–2429. [doi: 10.1109/TPAMI.2022.3170559]
                 [59]   Liu YX, Jin M, Pan SR, Zhou C, Zheng Y, Xia F, Yu P. Graph self-supervised learning: A survey. IEEE Trans. on Knowledge and Data
                     Engineering, 2023, 35(6): 5879–5900. [doi: 10.1109/TKDE.2022.3172903]
                 [60]   Xu KYL, Hu WH, Leskovec J, Jegelka S. How powerful are graph neural networks? arXiv:1810.00826, 2019.
                 [61]   Chen MR, Huang C, Xia LH, Wei W, Xu Y, Luo RH. Heterogeneous graph contrastive learning for recommendation. In: Proc. of the
                     16th ACM Int’l Conf. on Web Search and Data Mining. Singapore: ACM, 2023. 544–552. [doi: 10.1145/3539597.3570484]
                 [62]   Chen B, Zhang J, Zhang XK, Dong YX, Song J, Zhang P, Xu KB, Kharlamov E, Tang J. GCCAD: Graph contrastive coding for anomaly
                     detection. IEEE Trans. on Knowledge and Data Engineering, 2023, 35(8): 8037–8051. [doi: 10.1109/TKDE.2022.3200459]
                 [63]   Zheng Y, Jin M, Liu YX, Chi LH, Phan KT, Chen YPP. Generative and contrastive self-supervised learning for graph anomaly detection.
                     IEEE Trans. on Knowledge and Data Engineering, 2023, 35(12): 12220–12233. [doi: 10.1109/TKDE.2021.3119326]
                 [64]   Jin M, Liu YX, Zheng Y, Chi LH, Li YF, Pan SR. ANEMONE: Graph anomaly detection with multi-scale contrastive learning. In: Proc.
                     of the 30th ACM Int’l Conf. on Information & Knowledge Management. ACM, 2021. 3122–3126. [doi: 10.1145/3459637.3482057]
                 [65]   Chopra S, Hadsell R, LeCun Y. Learning a similarity metric discriminatively, with application to face verification. In: Proc. of the 2005
                     IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. San Diego: IEEE, 2005. 539–546. [doi: 10.1109/CVPR.2005.
                     202]
                 [66]   Kiros R, Zhu YK, Salakhutdinov RR, Zemel RS, Torralba A, Urtasun R, Fidler S. Skip-thought vectors. In: Proc. of the 29th Int’l Conf.
                     on Neural Information Processing Systems. Montreal: MIT Press, 2015. 3294–3302.
                 [67]   Le Q, Mikolov T. Distributed representations of sentences and documents. In: Proc. of the 31st Int’l Conf. on Machine Learning. 2014.
                     II-1188–II-1196.
                 [68]   Chen T, Kornblith S, Norouzi M, Hinton G. A simple framework for contrastive learning of visual representations. In: Proc. of the 37th
                     Int’l Conf. on Machine Learning. 2020. 1597–1607.
                 [69]   Tian YL, Sun C, Poole B, Krishnan D, Schmid C, Isola P. What makes for good views for contrastive learning? In: Proc. of the 34th Int’l
                     Conf. on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2020. 6827–6839.
                 [70]   Li HY, Wang X, Zhang ZW, Yuan ZH, Li H, Zhu WW. Disentangled contrastive learning on graphs. In: Proc. of the 35th Int’l Conf. on
                     Neural Information Processing Systems. Curran Associates Inc., 2021. 21872–21884.
                 [71]   Hassani  K,  Khasahmadi  AH.  Contrastive  multi-view  representation  learning  on  graphs.  In:  Proc.  of  the  37th  Int’l  Conf.  on  Machine
                     Learning. 2020. 4116–4126.
                 [72]   Zhu YQ, Xu YC, Yu F, Liu Q, Wu S, Wang L. Graph contrastive learning with adaptive augmentation. In: Proc. of the 2021 Web Conf.
                     Ljubljana: ACM, 2021. 2069–2080. [doi: 10.1145/3442381.3449802]
                 [73]   Thakoor S, Tallec C, Azar MG, Azabou M, Dyer EL, Munos R, Veličković P, Valko M. Large-scale representation learning on graphs via
                     bootstrapping. arXiv:2102.06514, 2023.
                 [74]   Qiu JZ, Chen QB, Dong YX, Zhang J, Yang HX, Ding M, Wang KS, Tang J. GCC: Graph contrastive coding for graph neural network
                     pre-training. In: Proc. of the 26th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. ACM, 2020. 1150–1160. [doi:
                     10.1145/3394486.3403168]
                 [75]   You YN, Chen TL, Shen Y, Wang ZY. Graph contrastive learning automated. arXiv:2106.07594, 2021.
                 [76]   Xu DK, Cheng W, Luo DS, Chen HF, Zhang X. InfoGCL: Information-aware graph contrastive learning. In: Proc. of the 35th Int’l Conf.
                     on Neural Information Processing Systems. Curran Associates Inc., 2021. 30414–30425.
                 [77]   Peng Z, Huang WB, Luo MN, Zheng QH, Rong Y, Xu TY, Huang JZ. Graph representation learning via graphical mutual information
                     maximization. In: Proc. of the 2020 Web Conf. Taipei: ACM, 2020. 259–270. [doi: 10.1145/3366423.3380112]
                 [78]   Sun  QY,  Li  JX,  Peng  H,  Wu  J,  Ning  YX,  Yu  PS,  He  LF.  SUGAR:  Subgraph  neural  network  with  reinforcement  pooling  and  self-
                     supervised mutual information mechanism. In: Proc. of the 2021 Web Conf. Ljubljana: ACM, 2021. 2081–2091. [doi: 10.1145/3442381.
                     3449822]
                 [79]   Mo YJ, Peng L, Xu J, Shi XS, Zhu XF. Simple unsupervised graph representation learning. In: Proc. of the 36th AAAI Conf. on Artificial
                     Intelligence. AAAI, 2022. 7797–7805. [doi: 10.1609/aaai.v36i7.20748]
   196   197   198   199   200   201   202   203   204   205   206