Page 199 - 《软件学报》2026年第1期
P. 199

196                                                        软件学报  2026  年第  37  卷第  1  期


                     Laplace  matrix  estimation.  IEEE  Trans.  on  Intelligent  Transportation  Systems,  2022,  23(2):  1009–1018.  [doi:  10.1109/TITS.2020.
                     3019497]
                  [9]   Ji SX, Pan SR, Cambria E, Marttinen P, Yu PS. A survey on knowledge graphs: Representation, acquisition, and applications. IEEE
                     Trans. on neural networks and learning systems, 2022, 33(2): 494–514. [doi: 10.1109/TNNLS.2021.3070843]
                 [10]   Yasunaga  M,  Bosselut  A,  Ren  HY,  Zhang  XK,  Manning  CD,  Liang  P,  Leskovec  J.  Deep  bidirectional  language-knowledge  graph
                     pretraining. In: Proc. of the 36th Int’l Conf. on Neural Information Processing Systems. New Orleans: Curran Associates Inc., 2022.
                     37309–37323.
                 [11]   Chandak P, Huang KX, Zitnik M. Building a knowledge graph to enable precision medicine. Scientific Data, 2023, 10(1): 67. [doi: 10.
                     1038/s41597-023-01960-3]
                 [12]   Santos  A,  Colaço  AR,  Nielsen  AB,  Niu  LL,  Strauss  M,  Geyer  PE,  Coscia  F,  Albrechtsen  NJW,  Mundt  F,  Jensen  LJ,  Mann  M.  A
                     knowledge graph to interpret clinical proteomics data. Nature Biotechnology, 2022, 40(5): 692–702. [doi: 10.1038/s41587-021-01145-6]
                 [13]   Li MM, Huang KX, Zitnik M. Graph representation learning in biomedicine and healthcare. Nature Biomedical Engineering, 2022, 6(12):
                     1353–1369. [doi: 10.1038/s41551-022-00942-x]
                 [14]   Ding KZ, Xu Z, Tong HH, Liu H. Data augmentation for deep graph learning: A survey. ACM SIGKDD Explorations Newsletter, 2022,
                     24(2): 61–77. [doi: 10.1145/3575637.3575646]
                 [15]   Wu  LF,  Cui  P,  Pei  J,  Zhao  L,  Guo  XJ.  Graph  neural  networks:  Foundation,  frontiers  and  applications.  In:  Proc.  of  the  28th  ACM
                     SIGKDD Conf. on Knowledge Discovery and Data Mining. Washington: ACM, 2022. 4840–4841. [doi: 10.1145/3534678.3542609]
                 [16]   Ahmed M, Seraj R, Islam SMS. The k-means algorithm: A comprehensive survey and performance evaluation. Electronics, 2020, 9(8):
                     1295. [doi: 10.3390/electronics9081295]
                 [17]   Sinaga KP, Yang MS. Unsupervised k-means clustering algorithm. IEEE Access, 2020, 8: 80716–80727. [doi: 10.1109/ACCESS.2020.
                     2988796]
                 [18]   Samek W, Montavon G, Lapuschkin S, Anders CJ, Müller KR. Explaining deep neural networks and beyond: A review of methods and
                     applications. Proc. of the IEEE, 2021, 109(3): 247–278. [doi: 10.1109/JPROC.2021.3060483]
                 [19]   Liou CY, Cheng WC, Liou JW, Liou DR. Autoencoder for words. Neurocomputing, 2014, 139: 84–96. [doi: 10.1016/j.neucom.2013.09.
                     055]
                 [20]   Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of deep bidirectional Transformers for language understanding. In: Proc.
                     of the 2019 Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol. 1
                     (Long and Short Papers). Minneapolis: Association for Computational Linguistics, 2019. 4171–4186. [doi: 10.18653/v1/N19-1423]
                 [21]   Brown  T,  Mann  B,  Ryder  N,  et  al.  In:  Proc.  of  the  34th  Int’l  Conf.  on  Neural  Information  Processing  Systems.  Vancouver:  Curran
                     Associates Inc., 2020. 1877–1901.
                 [22]   Goldblum M, Souri H, Ni RK, Shu ML, Prabhu V, Somepalli G, Chattopadhyay P, Ibrahim M, Bardes A, Hoffman J, Chellappa R,
                     Wilson AG, Goldstein T. Battle of the backbones: A large-scale comparison of pretrained models across computer vision tasks. In: Proc.
                     of the 37th Int’l Conf. on Neural Information Processing Systems. New Orleans: Curran Associates Inc., 2023. 29343–29371.
                 [23]   Bai YT, Geng XY, Mangalam K, Bar A, Yuille AL, Darrell T, Malik J, Efros AA. Sequential modeling enables scalable learning for large
                     vision models. In: Proc. of the 2024 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024. 22861–22872.
                     [doi: 10.1109/CVPR52733.2024.02157]
                 [24]   Cao  YX,  Xu  JR,  Yang  C,  Wang  JA,  Zhang  YC,  Wang  CP,  Chen  L,  Yang  Y.  When  to  pre-train  graph  neural  networks?  From  data
                     generation perspective! In: Proc. of the 29th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. Long Beach: ACM, 2023.
                     142–153. [doi: 10.1145/3580305.3599548]
                 [25]   Yin J, Li CZ, Yan H, Lian JX, Wang SZ. Train once and explain everywhere: Pre-training interpretable graph neural networks. In: Proc.
                     of the 37th Int’l Conf. on Neural Information Processing Systems. New Orleans: Curran Associates Inc., 2023. 35277–35299.
                 [26]   Islam A, Chen CF, Panda R, Karlinsky L, Feris R, Radke RJ. Dynamic distillation network for cross-domain few-shot recognition with
                     unlabeled data. In: Proc. of the 35th Int’l Conf. on Neural Information Processing Systems. Curran Associates Inc., 2021. 3584–3595.
                 [27]   Arjannikov T, Tzanetakis G. Cold-start hospital length of stay prediction using positive-unlabeled learning. In: Proc. of the 2021 IEEE
                     EMBS Int’l Conf. on Biomedical and Health Informatics (BHI). Athens: IEEE, 2021. 1–4. [doi: 10.1109/BHI50953.2021.9508596]
                 [28]   Liu Y, Zhu L, Pei SD, Fu HZ, Qin J, Zhang Q, Wan L, Feng W. From synthetic to real: Image dehazing collaborating with unlabeled real
                     data. In: Proc. of the 29th ACM Int’l Conf. on Multimedia. ACM, 2021. 50–58. [doi: 10.1145/3474085.3475331]
                 [29]   Ahmad W, Ali H, Shah Z, Azmat S. A new generative adversarial network for medical images super resolution. Scientific Reports, 2022,
                     12(1): 9533. [doi: 10.1038/s41598-022-13658-4]
                 [30]   Zhu JC, Gao LL, Song JK, Li YF, Zheng F, Li XL, Shen HT. Label-guided generative adversarial network for realistic image synthesis.
   194   195   196   197   198   199   200   201   202   203   204