Page 180 - 《软件学报》2026年第1期
P. 180
任睿晗 等: 面向整车系统的自动驾驶安全测试研究综述 177
[49] Sun LL, Huang S, Zheng CY, Bai TT, Hu Z. Test case generation for autonomous driving based on improved genetic algorithm. In: Proc.
of the 23rd IEEE Int’l Conf. on Software Quality, Reliability, and Security (QRS). Chiang Mai: IEEE, 2023. 272–278. [doi: 10.1109/
QRS60937.2023.00035]
[50] Tian HX, Jiang Y, Wu GQ, Yan JR, Wei J, Chen W, Li S, Ye D. MOSAT: Finding safety violations of autonomous driving systems using
multi-objective genetic algorithm. In: Proc. of the 30th ACM Joint European Software Engineering Conf. and Symp. on the Foundations
of Software Engineering. Singapore: ACM, 2022. 94–106. [doi: 10.1145/3540250.3549100]
[51] Tian HX, Wu GQ, Yan JR, Jiang Y, Wei J, Chen W, Li S, Ye D. Generating critical test scenarios for autonomous driving systems via
influential behavior patterns. In: Proc. of the 37th IEEE/ACM Int’l Conf. on Automated Software Engineering. Rochester: ACM, 2022.
46. [doi: 10.1145/3551349.3560430]
[52] Song RY, Ozmen MO, Kim H, Muller R, Celik ZB, Bianchi A. Discovering adversarial driving maneuvers against autonomous vehicles.
In: Proc. of the 32nd USENIX Security Symp. Anaheim: USENIX Association, 2023. 2957–2974.
[53] Kim S, Liu M, Rhee J, Jeon Y, Kwon Y, Kim CH. DriveFuzz: Discovering autonomous driving bugs through driving quality-guided
fuzzing. In: Proc. of the 2022 ACM SIGSAC Conf. on Computer and Communications Security (CCS). Los Angeles: ACM, 2022.
1753–1767. [doi: 10.1145/3548606.3560558]
[54] Tang SC, Zhang ZY, Zhou JX, Zhou Y, Li YF, Xue YX. EvoScenario: Integrating road structures into critical scenario generation for
autonomous driving system testing. In: Proc. of the 34th IEEE Int’l Symp. on Software Reliability Engineering (ISSRE). Florence: IEEE,
2023. 309–320. [doi: 10.1109/ISSRE59848.2023.00054]
[55] Wan ZW, Shen JJ, Chuang J, Xia X, Garcia J, Ma JQ, Chen QA. Too afraid to drive: Systematic discovery of semantic dos vulnerability
in autonomous driving planning under physical-world attacks. In: Proc. of the 29th Annual Network and Distributed System Security
Symp. (NDSS). San Diego: Internet Society, 2022. [doi: 10.14722/ndss.2022.24177]
[56] Sun Y, Poskitt CM, Sun J, Chen YQ, Yang ZJ. LawBreaker: An approach for specifying traffic laws and fuzzing autonomous vehicles.
In: Proc. of the 37th IEEE/ACM Int’l Conf. on Automated Software Engineering. Rochester: ACM, 2022. 62. [doi: 10.1145/3551349.
3556897]
[57] Lu CJ, Shi YZ, Zhang HH, Zhang M, Wang TX, Yue T, Ali S. Learning configurations of operating environment of autonomous vehicles
to maximize their collisions. IEEE Trans. on Software Engineering, 2023, 49(1): 384–402. [doi: 10.1109/TSE.2022.3150788]
[58] Lu CJ. Test scenario generation for autonomous driving systems with reinforcement learning. In: Proc. of the 45th IEEE/ACM Int’l Conf.
on Software Engineering: Companion Proc. (ICSE-Companion). Melbourne: IEEE, 2023. 317–319. [doi: 10.1109/ICSE-Companion
58688.2023.00086]
[59] Ul Haq F, Shin D, Briand LC. Many-objective reinforcement learning for online testing of DNN-enabled systems. In: Proc. of the 45th
IEEE/ACM Int’l Conf. on Software Engineering (ICSE). Melbourne: IEEE, 2023. 1814–1826. [doi: 10.1109/ICSE48619.2023.00155]
[60] Zhong ZY, Kaiser G, Ray B. Neural network guided evolutionary fuzzing for finding traffic violations of autonomous vehicles. IEEE
Trans. on Software Engineering, 2023, 49(4): 1860–1875. [doi: 10.1109/TSE.2022.3195640]
[61] Zhang XD, Zhao W, Sun Y, Sun J, Shen YL, Dong XW, Yang ZJ. Testing automated driving systems by breaking many laws efficiently.
In: Proc. of the 32nd ACM SIGSOFT Int’l Symp. on Software Testing and Analysis. Seattle: ACM, 2023. 942–953. [doi: 10.1145/
3597926.3598108]
[62] Prakash A, Chitta K, Geiger A. Multi-modal fusion Transformer for end-to-end autonomous driving. In: Proc. of the 2021 IEEE/CVF
Conf. on Computer Vision and Pattern Recognition (CVPR). Nashville: IEEE, 2021. 7073–7083. [doi: 10.1109/CVPR46437.2021.00700]
[63] Neis N, Beyerer J. Literature review on maneuver-based scenario description for automated driving simulations. In: Proc. of the 2023
IEEE Intelligent Vehicles Symp. (IV). Anchorage: IEEE, 2023. 1–8. [doi: 10.1109/IV55152.2023.10186545]
[64] Bengio Y, Lahlou S, Deleu T, Hu EJ, Tiwari M, Bengio E. GFlowNet foundations. arXiv:2111.09266, 2023.
[65] Hu ZS, Guo SJ, Zhong ZY, Li K. Coverage-based scene fuzzing for virtual autonomous driving testing. arXiv:2106.00873, 2021.
[66] Cheng MF, Zhou Y, Xie XF. BehAVExplor: Behavior diversity guided testing for autonomous driving systems. In: Proc. of the 32nd
ACM SIGSOFT Int’l Symp. on Software Testing and Analysis. Seattle: ACM, 2023. 488–500. [doi: 10.1145/3597926.3598072]
[67] Laurent T, Klikovits S, Arcaini P, Ishikawa F, Ventresque A. Parameter coverage for testing of autonomous driving systems under
uncertainty. ACM Trans. on Software Engineering and Methodology, 2023, 32(3): 58. [doi: 10.1145/3550270]
[68] Tang Y, Zhou Y, Wu FH, Liu Y, Sun J, Huang WL, Wang G. Route coverage testing for autonomous vehicles via map modeling. In:
Proc. of the 2021 IEEE Int’l Conf. on Robotics and Automation (ICRA). Xi’an: IEEE, 2021. 11450–11456. [doi: 10.1109/ICRA48506.
2021.9560890]
[69] Tang Y, Zhou Y, Zhang TW, Wu FH, Liu Y, Wang G. Systematic testing of autonomous driving systems using map topology-based
scenario classification. In: Proc. of the 36th IEEE/ACM Int’l Conf. on Automated Software Engineering (ASE). Melbourne: IEEE, 2021.

