Page 180 - 《软件学报》2026年第1期
P. 180

任睿晗 等: 面向整车系统的自动驾驶安全测试研究综述                                                       177


                 [49]   Sun LL, Huang S, Zheng CY, Bai TT, Hu Z. Test case generation for autonomous driving based on improved genetic algorithm. In: Proc.
                     of the 23rd IEEE Int’l Conf. on Software Quality, Reliability, and Security (QRS). Chiang Mai: IEEE, 2023. 272–278. [doi: 10.1109/
                     QRS60937.2023.00035]
                 [50]   Tian HX, Jiang Y, Wu GQ, Yan JR, Wei J, Chen W, Li S, Ye D. MOSAT: Finding safety violations of autonomous driving systems using
                     multi-objective genetic algorithm. In: Proc. of the 30th ACM Joint European Software Engineering Conf. and Symp. on the Foundations
                     of Software Engineering. Singapore: ACM, 2022. 94–106. [doi: 10.1145/3540250.3549100]
                 [51]   Tian HX, Wu GQ, Yan JR, Jiang Y, Wei J, Chen W, Li S, Ye D. Generating critical test scenarios for autonomous driving systems via
                     influential behavior patterns. In: Proc. of the 37th IEEE/ACM Int’l Conf. on Automated Software Engineering. Rochester: ACM, 2022.
                     46. [doi: 10.1145/3551349.3560430]
                 [52]   Song RY, Ozmen MO, Kim H, Muller R, Celik ZB, Bianchi A. Discovering adversarial driving maneuvers against autonomous vehicles.
                     In: Proc. of the 32nd USENIX Security Symp. Anaheim: USENIX Association, 2023. 2957–2974.
                 [53]   Kim S, Liu M, Rhee J, Jeon Y, Kwon Y, Kim CH. DriveFuzz: Discovering autonomous driving bugs through driving quality-guided
                     fuzzing.  In:  Proc.  of  the  2022  ACM  SIGSAC  Conf.  on  Computer  and  Communications  Security  (CCS).  Los  Angeles:  ACM,  2022.
                     1753–1767. [doi: 10.1145/3548606.3560558]
                 [54]   Tang SC, Zhang ZY, Zhou JX, Zhou Y, Li YF, Xue YX. EvoScenario: Integrating road structures into critical scenario generation for
                     autonomous driving system testing. In: Proc. of the 34th IEEE Int’l Symp. on Software Reliability Engineering (ISSRE). Florence: IEEE,
                     2023. 309–320. [doi: 10.1109/ISSRE59848.2023.00054]
                 [55]   Wan ZW, Shen JJ, Chuang J, Xia X, Garcia J, Ma JQ, Chen QA. Too afraid to drive: Systematic discovery of semantic dos vulnerability
                     in autonomous driving planning under physical-world attacks. In: Proc. of the 29th Annual Network and Distributed System Security
                     Symp. (NDSS). San Diego: Internet Society, 2022. [doi: 10.14722/ndss.2022.24177]
                 [56]   Sun Y, Poskitt CM, Sun J, Chen YQ, Yang ZJ. LawBreaker: An approach for specifying traffic laws and fuzzing autonomous vehicles.
                     In: Proc. of the 37th IEEE/ACM Int’l Conf. on Automated Software Engineering. Rochester: ACM, 2022. 62. [doi: 10.1145/3551349.
                     3556897]
                 [57]   Lu CJ, Shi YZ, Zhang HH, Zhang M, Wang TX, Yue T, Ali S. Learning configurations of operating environment of autonomous vehicles
                     to maximize their collisions. IEEE Trans. on Software Engineering, 2023, 49(1): 384–402. [doi: 10.1109/TSE.2022.3150788]
                 [58]   Lu CJ. Test scenario generation for autonomous driving systems with reinforcement learning. In: Proc. of the 45th IEEE/ACM Int’l Conf.
                     on  Software  Engineering:  Companion  Proc.  (ICSE-Companion).  Melbourne:  IEEE,  2023.  317–319.  [doi: 10.1109/ICSE-Companion
                     58688.2023.00086]
                 [59]   Ul Haq F, Shin D, Briand LC. Many-objective reinforcement learning for online testing of DNN-enabled systems. In: Proc. of the 45th
                     IEEE/ACM Int’l Conf. on Software Engineering (ICSE). Melbourne: IEEE, 2023. 1814–1826. [doi: 10.1109/ICSE48619.2023.00155]
                 [60]   Zhong ZY, Kaiser G, Ray B. Neural network guided evolutionary fuzzing for finding traffic violations of autonomous vehicles. IEEE
                     Trans. on Software Engineering, 2023, 49(4): 1860–1875. [doi: 10.1109/TSE.2022.3195640]
                 [61]   Zhang XD, Zhao W, Sun Y, Sun J, Shen YL, Dong XW, Yang ZJ. Testing automated driving systems by breaking many laws efficiently.
                     In:  Proc.  of  the  32nd  ACM  SIGSOFT  Int’l  Symp.  on  Software  Testing  and  Analysis.  Seattle:  ACM,  2023.  942–953.  [doi:  10.1145/
                     3597926.3598108]
                 [62]   Prakash A, Chitta K, Geiger A. Multi-modal fusion Transformer for end-to-end autonomous driving. In: Proc. of the 2021 IEEE/CVF
                     Conf. on Computer Vision and Pattern Recognition (CVPR). Nashville: IEEE, 2021. 7073–7083. [doi: 10.1109/CVPR46437.2021.00700]
                 [63]   Neis N, Beyerer J. Literature review on maneuver-based scenario description for automated driving simulations. In: Proc. of the 2023
                     IEEE Intelligent Vehicles Symp. (IV). Anchorage: IEEE, 2023. 1–8. [doi: 10.1109/IV55152.2023.10186545]
                 [64]   Bengio Y, Lahlou S, Deleu T, Hu EJ, Tiwari M, Bengio E. GFlowNet foundations. arXiv:2111.09266, 2023.
                 [65]   Hu ZS, Guo SJ, Zhong ZY, Li K. Coverage-based scene fuzzing for virtual autonomous driving testing. arXiv:2106.00873, 2021.
                 [66]   Cheng MF, Zhou Y, Xie XF. BehAVExplor: Behavior diversity guided testing for autonomous driving systems. In: Proc. of the 32nd
                     ACM SIGSOFT Int’l Symp. on Software Testing and Analysis. Seattle: ACM, 2023. 488–500. [doi: 10.1145/3597926.3598072]
                 [67]   Laurent  T,  Klikovits  S,  Arcaini  P,  Ishikawa  F,  Ventresque  A.  Parameter  coverage  for  testing  of  autonomous  driving  systems  under
                     uncertainty. ACM Trans. on Software Engineering and Methodology, 2023, 32(3): 58. [doi: 10.1145/3550270]
                 [68]   Tang Y, Zhou Y, Wu FH, Liu Y, Sun J, Huang WL, Wang G. Route coverage testing for autonomous vehicles via map modeling. In:
                     Proc. of the 2021 IEEE Int’l Conf. on Robotics and Automation (ICRA). Xi’an: IEEE, 2021. 11450–11456. [doi: 10.1109/ICRA48506.
                     2021.9560890]
                 [69]   Tang Y, Zhou Y, Zhang TW, Wu FH, Liu Y, Wang G. Systematic testing of autonomous driving systems using map topology-based
                     scenario classification. In: Proc. of the 36th IEEE/ACM Int’l Conf. on Automated Software Engineering (ASE). Melbourne: IEEE, 2021.
   175   176   177   178   179   180   181   182   183   184   185