Page 179 - 《软件学报》2026年第1期
P. 179

176                                                        软件学报  2026  年第  37  卷第  1  期


                     2024.
                 [25]   Pomerleau  DA.  ALVINN:  An  autonomous  land  vehicle  in  a  neural  network.  In:  Proc.  of  the  2nd  Int’l  Conf.  on  Neural  Information
                     Processing Systems (NIPS). Cambridge: MIT Press, 1988. 305–313.
                 [26]   Hu YH, Yang JZ, Chen L, Li KY, Sima CH, Zhu XZ, Chai SQ, Du SY, Lin TW, Wang WH, Lu LW, Jia XS, Liu Q, Dai JF, Qiao Y, Li
                     HY. Planning-oriented autonomous driving. In: Proc. of the 2023 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR).
                     Vancouver: IEEE, 2023. 17853–17862. [doi: 10.1109/CVPR52729.2023.01712]
                 [27]   Bojarski M, Del Testa D, Dworakowski D, Firner B, Flepp B, Goyal P, Jackel LD, Monfort M, Muller U, Zhang JK, Zhang X, Zhao J,
                     Zieba K. End to end learning for self-driving cars. arXiv:1604.07316, 2016.
                 [28]   Commaai. commaai/openpilot. 2024. https://github.com/commaai/openpilot
                 [29]   Caesar H, Bankiti V, Lang AH, Vora S, Liong VE, Xu Q, Krishnan A, Pan Y, Baldan G, Beijbom O. nuScenes: A multimodal dataset for
                     autonomous driving. In: Proc. of the 2020 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020.
                     11618–11628. [doi: 10.1109/CVPR42600.2020.01164]
                 [30]   Scenario-based open road testing. 2022. https://report.asam.net/scenario-based-open-road-testing
                 [31]   State Administration for Market Regulation, Standardization Administration of the People’s Republic of China, SAC. GB/T 43119-2023
                     Technical requirements for construction of closed test site for automatic driving. 2023 (in Chinese). https://www.chinesestandard.net/PDF.
                     aspx/GBT43119-2023
                 [32]   Zhou JX, Zhang Y, Guo SJ, Guo Y. A survey on autonomous driving system simulators. In: Proc. of the 2022 IEEE Int’l Symp. on
                     Software Reliability Engineering Workshops (ISSREW). Charlotte: IEEE, 2022. 301–306. [doi: 10.1109/ISSREW55968.2022.00084]
                 [33]   Pun A, Sun G, Wang JK, Chen Y, Yang Z, Manivasagam S, Ma WC, Urtasun R. LightSim: Neural lighting simulation for urban scenes.
                     arXiv:2312.06654, 2023.
                 [34]   Wei  YX,  Wang  Z,  Lu  YF,  Xu  CX,  Liu  CX,  Zhao  H,  Chen  SH,  Wang  YF.  Editable  scene  simulation  for  autonomous  driving  via
                     collaborative LLM-agents. In: Proc. of the 2024 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE,
                     2024. 15077–15087. [doi: 10.1109/CVPR52733.2024.01428]
                 [35]   Rong GD, Shin BH, Tabatabaee H, Lu Q, Lemke S, Možeiko M, Boise E, Uhm G, Gerow M, Mehta S, Agafonov E, Kim TH, Sterner E,
                     Ushiroda K, Reyes M, Zelenkovsky D, Kim S. LGSVL simulator: A high fidelity simulator for autonomous driving. In: Proc. of the 23rd
                     IEEE Int’l Conf. on Intelligent Transportation Systems (ITSC). Rhodes: IEEE, 2020. 1–6. [doi: 10.1109/ITSC45102.2020.9294422]
                 [36]   Dosovitskiy A, Ros G, Codevilla F, Lopez A, Koltun V. CARLA: An open urban driving simulator. arXiv:1711.03938, 2017.
                 [37]   IPG. CarMaker. 2024. https://ipg-automotive.com/en/products-solutions/software/carmaker
                 [38]   CarSim. 2024. https://www.carsim.com/products/carsim/index.php
                 [39]   Krajzewicz D, Hertkorn G, Wagner P, Rössel C. SUMO (simulation of urban mobility) an open-source traffic simulation. In: Proc. of the
                     4th Middle East Symp. on Simulation and Modelling (MESM). Sharjah: 2002. 183–187.
                 [40]   PTV. Vissim. 2024. https://www.ptvgroup.com/en/solutions/products/ptv-vissim
                 [41]   Ding WH, Xu CJ, Arief M, Lin HH, Li B, Zhao D. A survey on safety-critical driving scenario generation—A methodological perspective.
                     IEEE Trans. on Intelligent Transportation Systems, 2023, 24(7): 6971–6988. [doi: 10.1109/TITS.2023.3259322]
                 [42]   Menzel T, Bagschik G, Maurer M. Scenarios for development, test and validation of automated vehicles. In: Proc. of the 2018 IEEE
                     Intelligent Vehicles Symp. (IV). Changshu: IEEE, 2018. 1821–1827. [doi: 10.1109/IVS.2018.8500406]
                 [43]   Zhou Y, Sun Y, Tang Y, Chen YQ, Sun J, Poskitt CM, Liu Y, Yang ZJ. Specification-based autonomous driving system testing. IEEE
                     Trans. on Software Engineering, 2023, 49(6): 3391–3410. [doi: 10.1109/TSE.2023.3254142]
                 [44]   Huai  YQ,  Almanee  S,  Chen  YTY,  Wu  XF,  Chen  QA,  Garcia  J.  ScenoRITA:  Generating  diverse,  fully  mutable,  test  scenarios  for
                     autonomous vehicle planning. IEEE Trans. on Software Engineering, 2023, 49(10): 4656–4676. [doi: 10.1109/TSE.2023.3309610]
                 [45]   Deng  Y,  Yao  JH,  Tu  Z,  Zheng  X,  Zhang  MS,  Zhang  TY.  TARGET:  Automated  scenario  generation  from  traffic  rules  for  testing
                     autonomous vehicles via validated LLM-guided knowledge extraction. arXiv:2305.06018, 2025.
                 [46]   Montanari F, Stadler C, Sichermann J, German R, Djanatliev A. Maneuver-based resimulation of driving scenarios based on real driving
                     data.  In:  Proc.  of  the  2021  IEEE  Intelligent  Vehicles  Symp.  (IV).  Nagoya:  IEEE,  2021.  1124–1131.  [doi:  10.1109/IV48863.2021.
                     9575441]
                 [47]   Barr  ET,  Harman  M,  McMinn  P,  Shahbaz  M,  Yoo  S.  The  oracle  problem  in  software  testing:  A  survey.  IEEE  Trans.  on  Software
                     Engineering, 2015, 41(5): 507–525. [doi: 10.1109/TSE.2014.2372785]
                 [48]   Li GP, Li YR, Jha S, Tsai T, Sullivan M, Hari SKS, Kalbarczyk Z, Iyer R. AV-Fuzzer: Finding safety violations in autonomous driving
                     systems. In: Proc. of the 31st IEEE Int’l Symp. on Software Reliability Engineering (ISSRE). Coimbra: IEEE, 2020. 25–36. [doi: 10.1109/
                     ISSRE5003.2020.00012]
   174   175   176   177   178   179   180   181   182   183   184