Page 179 - 《软件学报》2026年第1期
P. 179
176 软件学报 2026 年第 37 卷第 1 期
2024.
[25] Pomerleau DA. ALVINN: An autonomous land vehicle in a neural network. In: Proc. of the 2nd Int’l Conf. on Neural Information
Processing Systems (NIPS). Cambridge: MIT Press, 1988. 305–313.
[26] Hu YH, Yang JZ, Chen L, Li KY, Sima CH, Zhu XZ, Chai SQ, Du SY, Lin TW, Wang WH, Lu LW, Jia XS, Liu Q, Dai JF, Qiao Y, Li
HY. Planning-oriented autonomous driving. In: Proc. of the 2023 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR).
Vancouver: IEEE, 2023. 17853–17862. [doi: 10.1109/CVPR52729.2023.01712]
[27] Bojarski M, Del Testa D, Dworakowski D, Firner B, Flepp B, Goyal P, Jackel LD, Monfort M, Muller U, Zhang JK, Zhang X, Zhao J,
Zieba K. End to end learning for self-driving cars. arXiv:1604.07316, 2016.
[28] Commaai. commaai/openpilot. 2024. https://github.com/commaai/openpilot
[29] Caesar H, Bankiti V, Lang AH, Vora S, Liong VE, Xu Q, Krishnan A, Pan Y, Baldan G, Beijbom O. nuScenes: A multimodal dataset for
autonomous driving. In: Proc. of the 2020 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020.
11618–11628. [doi: 10.1109/CVPR42600.2020.01164]
[30] Scenario-based open road testing. 2022. https://report.asam.net/scenario-based-open-road-testing
[31] State Administration for Market Regulation, Standardization Administration of the People’s Republic of China, SAC. GB/T 43119-2023
Technical requirements for construction of closed test site for automatic driving. 2023 (in Chinese). https://www.chinesestandard.net/PDF.
aspx/GBT43119-2023
[32] Zhou JX, Zhang Y, Guo SJ, Guo Y. A survey on autonomous driving system simulators. In: Proc. of the 2022 IEEE Int’l Symp. on
Software Reliability Engineering Workshops (ISSREW). Charlotte: IEEE, 2022. 301–306. [doi: 10.1109/ISSREW55968.2022.00084]
[33] Pun A, Sun G, Wang JK, Chen Y, Yang Z, Manivasagam S, Ma WC, Urtasun R. LightSim: Neural lighting simulation for urban scenes.
arXiv:2312.06654, 2023.
[34] Wei YX, Wang Z, Lu YF, Xu CX, Liu CX, Zhao H, Chen SH, Wang YF. Editable scene simulation for autonomous driving via
collaborative LLM-agents. In: Proc. of the 2024 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE,
2024. 15077–15087. [doi: 10.1109/CVPR52733.2024.01428]
[35] Rong GD, Shin BH, Tabatabaee H, Lu Q, Lemke S, Možeiko M, Boise E, Uhm G, Gerow M, Mehta S, Agafonov E, Kim TH, Sterner E,
Ushiroda K, Reyes M, Zelenkovsky D, Kim S. LGSVL simulator: A high fidelity simulator for autonomous driving. In: Proc. of the 23rd
IEEE Int’l Conf. on Intelligent Transportation Systems (ITSC). Rhodes: IEEE, 2020. 1–6. [doi: 10.1109/ITSC45102.2020.9294422]
[36] Dosovitskiy A, Ros G, Codevilla F, Lopez A, Koltun V. CARLA: An open urban driving simulator. arXiv:1711.03938, 2017.
[37] IPG. CarMaker. 2024. https://ipg-automotive.com/en/products-solutions/software/carmaker
[38] CarSim. 2024. https://www.carsim.com/products/carsim/index.php
[39] Krajzewicz D, Hertkorn G, Wagner P, Rössel C. SUMO (simulation of urban mobility) an open-source traffic simulation. In: Proc. of the
4th Middle East Symp. on Simulation and Modelling (MESM). Sharjah: 2002. 183–187.
[40] PTV. Vissim. 2024. https://www.ptvgroup.com/en/solutions/products/ptv-vissim
[41] Ding WH, Xu CJ, Arief M, Lin HH, Li B, Zhao D. A survey on safety-critical driving scenario generation—A methodological perspective.
IEEE Trans. on Intelligent Transportation Systems, 2023, 24(7): 6971–6988. [doi: 10.1109/TITS.2023.3259322]
[42] Menzel T, Bagschik G, Maurer M. Scenarios for development, test and validation of automated vehicles. In: Proc. of the 2018 IEEE
Intelligent Vehicles Symp. (IV). Changshu: IEEE, 2018. 1821–1827. [doi: 10.1109/IVS.2018.8500406]
[43] Zhou Y, Sun Y, Tang Y, Chen YQ, Sun J, Poskitt CM, Liu Y, Yang ZJ. Specification-based autonomous driving system testing. IEEE
Trans. on Software Engineering, 2023, 49(6): 3391–3410. [doi: 10.1109/TSE.2023.3254142]
[44] Huai YQ, Almanee S, Chen YTY, Wu XF, Chen QA, Garcia J. ScenoRITA: Generating diverse, fully mutable, test scenarios for
autonomous vehicle planning. IEEE Trans. on Software Engineering, 2023, 49(10): 4656–4676. [doi: 10.1109/TSE.2023.3309610]
[45] Deng Y, Yao JH, Tu Z, Zheng X, Zhang MS, Zhang TY. TARGET: Automated scenario generation from traffic rules for testing
autonomous vehicles via validated LLM-guided knowledge extraction. arXiv:2305.06018, 2025.
[46] Montanari F, Stadler C, Sichermann J, German R, Djanatliev A. Maneuver-based resimulation of driving scenarios based on real driving
data. In: Proc. of the 2021 IEEE Intelligent Vehicles Symp. (IV). Nagoya: IEEE, 2021. 1124–1131. [doi: 10.1109/IV48863.2021.
9575441]
[47] Barr ET, Harman M, McMinn P, Shahbaz M, Yoo S. The oracle problem in software testing: A survey. IEEE Trans. on Software
Engineering, 2015, 41(5): 507–525. [doi: 10.1109/TSE.2014.2372785]
[48] Li GP, Li YR, Jha S, Tsai T, Sullivan M, Hari SKS, Kalbarczyk Z, Iyer R. AV-Fuzzer: Finding safety violations in autonomous driving
systems. In: Proc. of the 31st IEEE Int’l Symp. on Software Reliability Engineering (ISSRE). Coimbra: IEEE, 2020. 25–36. [doi: 10.1109/
ISSRE5003.2020.00012]

