Page 181 - 《软件学报》2026年第1期
P. 181

178                                                        软件学报  2026  年第  37  卷第  1  期


                     1342–1346. [doi: 10.1109/ASE51524.2021.9678735]
                 [70]   Li CW, Cheng CH, Sun TT, Chen YH, Yan RJ. ComOpT: Combination and optimization for testing autonomous driving systems. In:
                     Proc. of the 2022 IEEE Int’l Conf. on Robotics and Automation (ICRA). Philadelphia: IEEE, 2022. 7738–7744. [doi: 10.1109/ICRA
                     46639.2022.9811794]
                 [71]   Hildebrandt C, von Stein M, Elbaum S. PhysCov: Physical test coverage for autonomous vehicles. In: Proc. of the 32nd ACM SIGSOFT
                     Int’l Symp. on Software Testing and Analysis. Seattle: ACM, 2023. 449–461. [doi: 10.1145/3597926.3598069]
                 [72]   Wang NF, Luo YP, Sato T, Xu KD, Chen QA. Does physical adversarial example really matter to autonomous driving? Towards system-
                     level effect of adversarial object evasion attack. In: Proc. of the 2023 IEEE/CVF Int’l Conf. on Computer Vision (ICCV). Paris: IEEE,
                     2023. 4389–4400. [doi: 10.1109/ICCV51070.2023.00407]
                 [73]   Yan C, Xu ZJ, Yin ZY, Ji XY, Xu WY. Rolling colors: Adversarial laser exploits against traffic light recognition. In: Proc. of the 31st
                     USENIX Security Symp. Boston: USENIX Association, 2022. 1957–1974.
                 [74]   Cao YL, Xiao CW, Cyr B, Zhou YM, Park W, Rampazzi S, Chen QA, Fu K, Mao ZM. Adversarial sensor attack on LiDAR-based
                     perception  in  autonomous  driving.  In:  Proc.  of  the  2019  ACM  SIGSAC  Conf.  on  Computer  and  Communications  Security.  London:
                     ACM, 2019. 2267–2281. [doi: 10.1145/3319535.3339815]
                 [75]   Yang  KC,  Tsai  T,  Yu  HG,  Panoff  M,  Ho  TY,  Jin  YE.  Robust  roadside  physical  adversarial  attack  against  deep  learning  in  LiDAR
                     perception modules. In: Proc. of the 2021 ACM Asia Conf. on Computer and Communications Security. ACM, 2021. 349–362. [doi: 10.
                     1145/3433210.3453106]
                 [76]   Cao YL, Wang NF, Xiao CW, Yang DW, Fang J, Yang RG, Chen QA, Liu MY, Li B. Invisible for both camera and LiDAR: Security of
                     multi-sensor fusion based perception in autonomous driving under physical-world attacks. In: Proc. of the 2021 IEEE Symp. on Security
                     and Privacy (SP). San Francisco: IEEE, 2021. 176–194. [doi: 10.1109/SP40001.2021.00076]
                 [77]   Hallyburton  RS,  Liu  YP,  Cao  YL,  Mao  ZM,  Pajic  M.  Security  analysis  of  camera-LiDAR  fusion  against  black-box  attacks  on
                     autonomous vehicles. In: Proc. of the 31st USENIX Security Symp. Boston: USENIX Association, 2022. 1903–1920.
                 [78]   Boloor A, Garimella K, He X, Gill C, Vorobeychik Y, Zhang X. Attacking vision-based perception in end-to-end autonomous driving
                     models. Journal of Systems Architecture, 2020, 110: 101766. [doi: 10.1016/j.sysarc.2020.101766]
                 [79]   Pavlitskaya S, Ünver S, Zöllner JM. Feasibility and suppression of adversarial patch attacks on end-to-end vehicle control. In: Proc. of the
                     23rd Int’l Conf. on Intelligent Transportation Systems (ITSC). Rhodes: IEEE, 2020. 1–8. [doi: 10.1109/ITSC45102.2020.9294426]
                 [80]   Wu H, Yunas S, Rowlands S, Ruan WJ, Wahlström J. Adversarial driving: Attacking end-to-end autonomous driving. In: Proc. of the
                     2023 IEEE Intelligent Vehicles Symp. (IV). Anchorage: IEEE, 2023. 1–7. [doi: 10.1109/IV55152.2023.10186386]
                 [81]   Jha S, Cui SK, Banerjee S, Cyriac J, Tsai T, Kalbarczyk Z, Iyer RK. ML-driven malware that targets AV safety. In: Proc. of the 50th
                     Annual IEEE/IFIP Int’l Conf. on Dependable Systems and Networks (DSN). Valencia: IEEE, 2020. 113–124. [doi: 10.1109/DSN48063.
                     2020.00030]
                 [82]   Patel  N,  Krishnamurthy  P,  Garg  S,  Khorrami  F.  Overriding  autonomous  driving  systems  using  adaptive  adversarial  billboards.  IEEE
                     Trans. on Intelligent Transportation Systems, 2022, 23(8): 11386–11396. [doi: 10.1109/TITS.2021.3103441]
                 [83]   Von Stein M, Shriver D, Elbaum S. DeepManeuver: Adversarial test generation for trajectory manipulation of autonomous vehicles. IEEE
                     Trans. on Software Engineering, 2023, 49(10): 4496–4509. [doi: 10.1109/TSE.2023.3301443]
                 [84]   Hubschneider C, Bauer A, Weber M, Zöllner JM. Adding navigation to the equation: Turning decisions for end-to-end vehicle control. In:
                     Proc. of the 20th IEEE Int’l Conf. on Intelligent Transportation Systems (ITSC). Yokohama: IEEE, 2017. 1–8. [doi: 10.1109/ITSC.2017.
                     8317923]
                 [85]   Codevilla F, Müller M, López A, Koltun V, Dosovitskiy A. End-to-end driving via conditional imitation learning. In: Proc. of the 2018
                     IEEE Int’l Conf. on Robotics and Automation (ICRA). Brisbane: IEEE, 2018. 4693–4700. [doi: 10.1109/ICRA.2018.8460487]
                 [86]   Papernot N, McDaniel P, Jha S, Fredrikson M, Celik ZB, Swami A. The limitations of deep learning in adversarial settings. In: Proc. of
                     the 2016 IEEE European Symp. on Security and Privacy (EuroS&P). Saarbruecken: IEEE, 2016. 372–387. [doi: 10.1109/EuroSP.2016.
                     36]
                 [87]   Madry A, Makelov A, Schmidt L, Tsipras D, Vladu A. Towards deep learning models resistant to adversarial attacks. arXiv:1706.06083,
                     2019.
                 [88]   Huai YQ, Chen YTY, Almanee S, Ngo T, Liao X, Wan ZW, Chen QA, Garcia J. Doppelgänger test generation for revealing bugs in
                     autonomous driving software. In: Proc. of the 45th IEEE/ACM Int’l Conf. on Software Engineering (ICSE). Melbourne: IEEE, 2023.
                     2591–2603. [doi: 10.1109/ICSE48619.2023.00216]
                 [89]   Han  JC,  Zhou  ZQ.  Metamorphic  fuzz  testing  of  autonomous  vehicles.  In:  Proc.  of  the  42nd  IEEE/ACM  Int’l  Conf.  on  Software
                     Engineering Workshops. Seoul: ACM, 2020. 380–385. [doi: 10.1145/3387940.3392252]
   176   177   178   179   180   181   182   183   184   185   186