Page 57 - 《软件学报》2025年第12期
P. 57

软件学报 ISSN 1000-9825, CODEN RUXUEW                                        E-mail: jos@iscas.ac.cn
                 2025,36(12):5438−5455 [doi: 10.13328/j.cnki.jos.007409] [CSTR: 32375.14.jos.007409]  http://www.jos.org.cn
                 ©中国科学院软件研究所版权所有.                                                          Tel: +86-10-62562563



                                                                         *
                 基于时序逻辑的需求文本隐含语义解析与推理

                 李春奕,    马    智,    武    强,    王小兵,    赵    亮


                 (西安电子科技大学 计算机科学与技术学院, 陕西 西安 710071)
                 通信作者: 王小兵, E-mail: xbwang@mail.xidian.edu.cn; 赵亮, E-mail: lzhao@xidian.edu.cn

                 摘 要: 时序逻辑已被广泛应用于形式化验证和机器人控制等领域, 但是对于非专家用户来说难以掌握使用. 因此,
                 采用自动化手段从自然语言文本中提取时序逻辑公式, 是至关重要的. 然而, 现有工作受限于需求样本稀疏和自然
                 语言语义模糊等因素, 导致其难以准确地识别自然语言文本中隐含的时序语义, 进而造成最终得到的时序逻辑公
                 式错误表达了原始自然语言的语义. 为了解决该问题, 提出一种基于小样本网络的时序逻辑语义分析方法                                 FSLNets-
                 TLSA, 它采用了数据预处理用来增强文本时序语义逻辑特征, 网络结构由编码器、归纳模块和关系模块组成, 旨
                 在捕捉需求文本的隐含时序逻辑语义信息, 并集成模型增强模块识别监控语义准确度. 在                            3  个公开数据集    3 533  个
                 需求样本上与相似工具上完成实验评估, 其分析的平均准确率、召回率和                        F1  值达到了  96.55%, 96.29%  和  96.42%,
                 验证了所提方法的有效性.
                 关键词: 时序逻辑; 语义分析; 形式化规约
                 中图法分类号: TP311

                 中文引用格式: 李春奕, 马智, 武强, 王小兵, 赵亮. 基于时序逻辑的需求文本隐含语义解析与推理. 软件学报, 2025, 36(12): 5438–
                 5455. http://www.jos.org.cn/1000-9825/7409.htm
                 英文引用格式: Li CY, Ma Z, Wu Q, Wang XB, Zhao L. Implicit Semantic Parsing and Reasoning of Requirement Text Based on
                 Temporal  Logic.  Ruan  Jian  Xue  Bao/Journal  of  Software,  2025, 36(12): 5438–5455  (in  Chinese).  http://www.jos.org.cn/1000-9825/
                 7409.htm

                 Implicit Semantic Parsing and Reasoning of Requirement Text Based on Temporal Logic

                 LI Chun-Yi, MA Zhi, WU Qiang, WANG Xiao-Bing, ZHAO Liang
                 (School of Computer Science and Technology, Xidian University, Xi’an 710071, China)
                 Abstract:  Temporal  logic  has  been  extensively  applied  in  domains  such  as  formal  verification  and  robotics  control,  yet  it  remains
                 challenging  for  non-expert  users  to  master.  Therefore,  the  automated  extraction  of  temporal  logic  formulas  from  natural  language  texts  is
                 crucial.  However,  existing  efforts  are  hindered  by  issues  such  as  sparse  sample  availability  and  the  ambiguity  of  natural  language
                 semantics,  which  impede  the  accurate  identification  of  implicit  temporal  semantics  within  natural  language  texts,  thus  leading  to  errors  in
                 the  translation  of  the  original  natural  language  semantics  into  temporal  logic  formulas.  To  address  this  issue,  a  novel  method  for  temporal
                 logic  semantic  analysis  based  on  a  few-shot  learning  network,  termed  FSLNets-TLSA,  is  proposed.  This  method  employs  data
                 preprocessing  techniques  to  enhance  the  temporal  semantic  logic  features  of  the  text.  The  network  architecture  consists  of  an  encoder,  an
                 induction  module,  and  a  relation  module,  which  aim  to  capture  the  implicit  temporal  logic  semantic  information  in  the  input  text.  In
                 addition,  an  enhancement  module  is  incorporated  to  improve  the  accuracy  of  monitoring  semantic  recognition.  The  effectiveness  of  the
                 proposed method is validated through experimental evaluations conducted on three public datasets comprising a total of 3 533 samples, and
                 a  comparison  with  similar  tools.  The  analysis  demonstrates  an  average  Accuracy,  Recall,  and  F1-score  of  96.55%,  96.29%,  and  96.42%,
                 respectively.
                 Key words:  temporal logic (TL); semantic analysis; formal specification


                 *    基金项目: 陕西省重点研发计划  (2023-YBGY-229); 西安市科技项目  (22GXFW0025)
                  收稿时间: 2024-12-13; 修改时间: 2025-01-21; 采用时间: 2025-02-11; jos 在线出版时间: 2025-06-11
                  CNKI 网络首发时间: 2025-06-11
   52   53   54   55   56   57   58   59   60   61   62