Page 340 - 《软件学报》2025年第12期
P. 340

余建兴 等: 基于常识推理问答的多模态题文不符检测                                                       5721


                 4
                 (Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), Guangzhou 510330, China)
                 Abstract:  This  study  investigates  the  task  of  clickbait  detection  in  social  media  posts.  These  posts  often  employ  deceptive  headlines  or
                 thumbnails  to  mislead  readers  into  clicking  on  irrelevant  or  undesirable  content,  thus  enabling  widespread  dissemination  and  generating
                 commercial  benefits  such  as  increased  clicks.  To  evade  detection,  malicious  creators  frequently  disguise  clickbait  posts  as  legitimate  ones,
                 using  techniques  such  as  adding  irrelevant  or  misleading  content  to  deceive  the  detector.  Detecting  such  posts  requires  a  detailed  analysis
                 and  complex  multi-step  reasoning  using  commonsense  knowledge  to  identify  inconsistencies.  However,  existing  methods  typically  treat  a
                 post  as  a  simple  text  span  and  feed  it  into  a  neural  network  for  classification,  neglecting  the  analysis  of  inherent  false  details,  which  leads
                 to  misjudgments.  Moreover,  these  black-box  models  lack  explainability.  To  address  this  issue,  a  new  question-guided  detector  is  proposed,
                 which  systematically  analyzes  the  details  through  a  doubt-then-verify  approach  to  uncover  potential  inconsistencies  and  falsehoods.
                 Specifically,  a  multi-modal  retrieval-augmented  technique  is  used  to  extract  detailed  clues  from  the  content  of  the  post,  followed  by
                 questioning  each  clue.  To  ensure  thorough  verification  of  facts  and  their  complex  relationships,  both  simple  matching  questions  and  deep
                 commonsense  reasoning  questions  with  varying  levels  of  complexity  are  employed.  Each  question  yields  a  plausible  answer  from  the  post,
                 but  the  answer  may  be  fabricated  or  inaccurate.  Therefore,  an  open-domain  QA  model  is  utilized  for  cross-verification,  leveraging  external
                 knowledge  to  derive  a  more  reliable  answer.  When  discrepancies  are  found  between  answers,  the  post  is  likely  to  contain  false  content.
                 This  inconsistency  serves  as  a  valuable  feature  and  can  be  combined  with  other  multi-modal  features  indicative  of  clickbait,  improving  the
                 discriminative  power  of  the  detection  model.  By  breaking  down  the  complex  clickbait  detection  task  into  a  series  of  question-guided
                 verification  steps,  inconspicuous  inconsistencies  can  be  identified  to  explain  the  underlying  reasons  for  clickbait.  Extensive  experiments  on
                 three popular datasets demonstrate the effectiveness of the proposed approach.
                 Key words:  clickbait detection; commonsense reasoning; question generation

                    随着社交媒体的快速发展, 推文已成为人们获取信息和分享感悟的重要渠道. 优质的推文可以捕获大量的用
                 户点击量和阅读量, 这会给推文的创作者和社交平台带来盈利. 为了获得竞争优势, 恶意创作者通常使用不正当的
                 方式在推文的标题、封面图和正文中添加一些诱人或欺骗性的内容, 以吸引读者的关注. 当读者受好奇心驱使                                    [1]
                 而点开相关的链接, 却发现内含大量如夸张、低俗等低质内容, 进而产生被骗、失望和厌恶的感觉. 受利益的驱
                 使, 这种题文不符的推文在社交平台上日渐猖獗. 这不但损害了用户体验, 而且还会给社交平台甚至社会都带来严
                 重的负面影响, 譬如传播错误信息、误导公众舆论、侵蚀用户信任和社交平台的声誉等                             [2] . 因此, 研究如何有效地
                 检测这种题文不符的推文具有重要的商业价值和广泛的应用前景                      [3] .
                    为了检测题文不符推文, 社交平台采取了很多的方法, 其中一种方式是人工审核. 然而, 这种方式成本高、耗
                 时大, 难以应对大量题文不符推文的快速传播. 因此, 机器自动检测成为当前的重点研究方向. 根据判别依据的来
                 源, 机器检测方法可以归纳为两种类型. 第            1  种是基于社交行为      [4] , 即通过学习推文在网络上传播的特性来判别,
                 如题文不符推文通常有高点击量和高分享次数, 但由于质量差, 对应的阅读时间却很短. 但这种行为特征依赖于用
                 户的反馈数据, 存在延迟和遗漏等问题, 且检测时效性弱. 另一种方法是分析推文的内容, 根据题文不符推文常见
                 的欺骗性词语、句法、情感、写作风格              [5] , 甚至是标点符号  [6] 等语言特征来判断. 此外, 题文不符推文的各个组成
                 部分之间通常存在不一致, 例如标题与正文无关, 所描述的内容虚假并与实际情况相矛盾等. 为了分析内容的质
                 量, 早期方法依赖于人工构建的规则, 成本高且可扩展性差. 后期使用数据驱动的神经网络模型, 通过学习内容与
                 标签之间的关联来预测. 虽然可用性变强了, 但这种黑箱般的神经模型难以解释决策过程                            [7] . 可解释性对于建立可
                 信人工智能至关重要       [8] . 此外, 仅基于简单关联, 恶意创作者很容易利用一些技巧来伪装, 例如添加一些无害的无
                 关内容以制造假关联来欺骗检测模型. 此外, 恶意创作者还会引入多种模态的虚假内容, 如使用视觉模态的与正文
                 无关封面图来诱惑读者点击. 这比纯文本内容更难判断, 因为需要分析各种模态内容细节的真实性和相关性.
                    所谓质疑是发现真理的重要途径. 针对这些复杂的题文不符推文, 我们发现人们往往通过质疑来分析出细节
                 中的不一致, 即对推文中的各个可疑点进行发问和深度验证, 并结合推文字面的含义和常识推理来发现矛盾点, 实
                 现去伪存真. 如图     1  所示, 推文带有一条吸引人的标题, 恶意创作者在正文中注入了不少虚假内容, 让其跟真实内
                 容混杂在一起, 力求让其伪装成合法的, 从而引起检测模型漏判和误判. 图                      1  中的红框标记了诱骗的内容, 下划线
                 和箭头表示多步的推理过程. 针对题文不符推文, 人们往往通过质疑来揣摩细节和发现矛盾. 例如发问“由在基尔
                 大学实习的    15  岁男孩取得的名为     WASP-142b  的新发现是什么?” 人们发现从推文字面中得到答案               1, 但依赖外部
   335   336   337   338   339   340   341   342   343   344   345