Page 337 - 《软件学报》2025年第12期
P. 337
5718 软件学报 2025 年第 36 卷第 12 期
Proc. of the 15th ACM Int’l Conf. on Web Search and Data Mining. ACM, 2022. 813–823. [doi: 10.1145/3488560.3498433]
[17] Cai XH, Huang C, Xia LH, Ren XB. LightGCL: Simple yet effective graph contrastive learning for recommendation. arXiv:2302.08191,
2023.
[18] Liu ZW, Chen YJ, Li J, Yu PS, McAuley J, Xiong CM. Contrastive self-supervised sequential recommendation with robust augmentation.
arXiv:2108.06479, 2021.
[19] Dang YZ, Yang EN, Guo GB, Jiang LY, Wang XW, Xu XX, Sun QH, Liu H. Uniform sequence better: Time interval aware data
augmentation for sequential recommendation. In: Proc. of the 37th AAAI Conf. on Artificial Intelligence. Washington: AAAI, 2023.
4225–4232. [doi: 10.1609/aaai.v37i4.25540]
[20] Fang Y, Tan Z, Chen ZY, Xiao WD, Zhang LL, Tian F. Contrastive meta-learning on heterogeneous information networks for cold-start
recommendation. Ruan Jian Xue Bao/Journal of Software, 2023, 34(10): 4548–4564 (in Chinese with English abstract). http://www.jos.
org.cn/1000-9825/6886.htm [doi: 10.13328/j.cnki.jos.006886]
[21] Qian ZS, Xiao SL, Zhu H, Wang XW, Liu JP. Long-tail recommendation model utilizing GRU dual-branch information col-laboration
enhancement. Journal of Frontiers of Computer Science & Technology, 2025, 19(2): 476–489 (in Chinese with English abstract). [doi: 10.
3778/j.issn.1673-9418.2402052]
[22] Xin X, Yang L, Zhao ZQ, Ren PJ, ChenZM, Ma J, Ren ZC. On the effectiveness of unlearning in session-based recommendation. In:
Proc. of the 17th ACM Int’l Conf. on Web Search and Data Mining. Merida: ACM, 2024. 855–863. [doi: 10.1145/3616855.3635823]
[23] Zhang C, Han QL, Chen R, Zhao XY, Tang P, Song HT. SSDRec: Self-augmented sequence denoising for sequential recommendation.
In: Proc. of the 40th IEEE Int’l Conf. on Data Engineering. Utrecht: IEEE, 2024. 803–815. [doi: 10.1109/ICDE60146.2024.00067]
[24] Feng YF, You HX, Zhang ZZ, Ji RR, Gao Y. Hypergraph neural networks. In: Proc. of the 33rd AAAI Conf. on Artificial Intelligence.
Honolulu: AAAI, 2019. 3558–3565. [doi: 10.1609/aaai.v33i01.33013558]
[25] Wang JL, Ding KZ, Hong LJ, Liu H, Caverlee J. Next-item recommendation with sequential hypergraphs. In: Proc. of the 43rd Int’l ACM
SIGIR Conf. on Research and Development in Information Retrieval. ACM, 2020. 1101–1110. [doi: 10.1145/3397271.3401133]
[26] Zhao S, Wei W, Liu YF, Wang ZY, Li WD, Mao XL, Zhu S, Yang MH, Wen ZJ. Towards hierarchical policy learning for conversational
recommendation with hypergraph-based reinforcement learning. In: Proc. of the 32nd Int’l Joint Conf. on Artificial Intelligence. Macao:
ijcai.org, 2023. 273. [doi: 10.24963/ijcai.2023/273]
[27] Yu YL, Yang EN, Guo GB, Jiang LY, Wang XW. Handling information loss of graph neural networks for session-based
recommendation. In: Proc. of the 32nd Int’l Joint Conf. on Artificial Intelligence. 2023. 2415–2422.
[28] Yang LW, Wang SJ, Tao YZ, Sun JK, Liu XL, Yu PS, Wang TQ. DGRec: Graph neural network for recommendation with diversified
embedding generation. In: Proc. of the 16th Int’l Conf. on Web Search and Data Mining. Singapore: ACM, 2023. 661–669. [doi: 10.1145/
3539597.3570472]
[29] Zhang Q, Wu B, Sun ZC, Ye YD. Fine-grained modeling of user interests for sequential recommendation. Scientia Sinica Informationis,
2022, 52(10): 1775–1791 (in Chinese with English abstract). [doi: 10.1360/SSI-2021-0026]
[30] Yu JL Yin HZ, Xia X, Chen T, Cui LZ, Nguyen QVH. Are graph augmentations necessary?: Simple graph contrastive learning for
recommendation. In: Proc. of the 45th Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. Madrid: ACM,
2022. 1294–1303. [doi: 10.1145/3477495.3531937]
[31] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. In: Proc. of the
31st Int’l Conf. on Neural Information Processing Systems. Long Beach: Curran Associates Inc. , 2017. 6000–6010.
[32] He XN, Deng K, Wang X, Li Y, Zhang YD, Wang M. LightGCN: Simplifying and powering graph convolution network for
recommendation. In: Proc. of the 43rd Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. ACM, 2020.
639–648. [doi: 10.1145/3397271.3401063]
[33] Liu Q, Zeng YF, Mokhosi R, Zhang HB. STAMP: Short-term attention/memory priority model for session-based recommendation. In:
Proc. of the 24th ACM SIGKDD Int’l Conf. on Knowledge Discovery & Data Mining. London: ACM, 2018. 1831–1839. [doi: 10.1145/
3219819.3219950]
[34] Sun F, Liu J, Wu J, Pei CH, Lin X, Ou WW, Jiang P. BERT4Rec: Sequential recommendation with bidirectional encoder representations
from Transformer. In: Proc. of the 28th ACM Int’l Conf. on Information and Knowledge Management. Beijing: ACM, 2019. 1441–1450.
[doi: 10.1145/3357384.3357895]
[35] Wei SW, Wu ZW, Li X, Wu QT, Zhang ZQ, Zhou J, Gu LH, Gu JJ. Leave no one behind: Online self-supervised self-distillation for
sequential recommendation. In: Proc. of the 2024 ACM Web Conf. Singapore: ACM, 2024. 3767–3776. [doi: 10.1145/3589334.3645590]
[36] Chen JY, Zou GX, Zhou P, Wu YR, Chen ZH, Su HC, Wang H, Gong ZG. Sparse enhanced network: An adversarial generation method
for robust augmentation in sequential recommendation. In: Proc. of the 38th AAAI Conf. on Artificial Intelligence. Vancouver: AAAI,

