Page 337 - 《软件学报》2025年第12期
P. 337

5718                                                      软件学报  2025  年第  36  卷第  12  期


                     Proc. of the 15th ACM Int’l Conf. on Web Search and Data Mining. ACM, 2022. 813–823. [doi: 10.1145/3488560.3498433]
                 [17]   Cai XH, Huang C, Xia LH, Ren XB. LightGCL: Simple yet effective graph contrastive learning for recommendation. arXiv:2302.08191,
                     2023.
                 [18]   Liu ZW, Chen YJ, Li J, Yu PS, McAuley J, Xiong CM. Contrastive self-supervised sequential recommendation with robust augmentation.
                     arXiv:2108.06479, 2021.
                 [19]   Dang  YZ,  Yang  EN,  Guo  GB,  Jiang  LY,  Wang  XW,  Xu  XX,  Sun  QH,  Liu  H.  Uniform  sequence  better:  Time  interval  aware  data
                     augmentation for sequential recommendation. In: Proc. of the 37th AAAI Conf. on Artificial Intelligence. Washington: AAAI, 2023.
                     4225–4232. [doi: 10.1609/aaai.v37i4.25540]
                 [20]   Fang Y, Tan Z, Chen ZY, Xiao WD, Zhang LL, Tian F. Contrastive meta-learning on heterogeneous information networks for cold-start
                     recommendation. Ruan Jian Xue Bao/Journal of Software, 2023, 34(10): 4548–4564 (in Chinese with English abstract). http://www.jos.
                     org.cn/1000-9825/6886.htm [doi: 10.13328/j.cnki.jos.006886]
                 [21]   Qian ZS, Xiao SL, Zhu H, Wang XW, Liu JP. Long-tail recommendation model utilizing GRU dual-branch information col-laboration
                     enhancement. Journal of Frontiers of Computer Science & Technology, 2025, 19(2): 476–489 (in Chinese with English abstract). [doi: 10.
                     3778/j.issn.1673-9418.2402052]
                 [22]   Xin X, Yang L, Zhao ZQ, Ren PJ, ChenZM, Ma J, Ren ZC. On the effectiveness of unlearning in session-based recommendation. In:
                     Proc. of the 17th ACM Int’l Conf. on Web Search and Data Mining. Merida: ACM, 2024. 855–863. [doi: 10.1145/3616855.3635823]
                 [23]   Zhang C, Han QL, Chen R, Zhao XY, Tang P, Song HT. SSDRec: Self-augmented sequence denoising for sequential recommendation.
                     In: Proc. of the 40th IEEE Int’l Conf. on Data Engineering. Utrecht: IEEE, 2024. 803–815. [doi: 10.1109/ICDE60146.2024.00067]
                 [24]   Feng YF, You HX, Zhang ZZ, Ji RR, Gao Y. Hypergraph neural networks. In: Proc. of the 33rd AAAI Conf. on Artificial Intelligence.
                     Honolulu: AAAI, 2019. 3558–3565. [doi: 10.1609/aaai.v33i01.33013558]
                 [25]   Wang JL, Ding KZ, Hong LJ, Liu H, Caverlee J. Next-item recommendation with sequential hypergraphs. In: Proc. of the 43rd Int’l ACM
                     SIGIR Conf. on Research and Development in Information Retrieval. ACM, 2020. 1101–1110. [doi: 10.1145/3397271.3401133]
                 [26]   Zhao S, Wei W, Liu YF, Wang ZY, Li WD, Mao XL, Zhu S, Yang MH, Wen ZJ. Towards hierarchical policy learning for conversational
                     recommendation with hypergraph-based reinforcement learning. In: Proc. of the 32nd Int’l Joint Conf. on Artificial Intelligence. Macao:
                     ijcai.org, 2023. 273. [doi: 10.24963/ijcai.2023/273]
                 [27]   Yu  YL,  Yang  EN,  Guo  GB,  Jiang  LY,  Wang  XW.  Handling  information  loss  of  graph  neural  networks  for  session-based
                     recommendation. In: Proc. of the 32nd Int’l Joint Conf. on Artificial Intelligence. 2023. 2415–2422.
                 [28]   Yang LW, Wang SJ, Tao YZ, Sun JK, Liu XL, Yu PS, Wang TQ. DGRec: Graph neural network for recommendation with diversified
                     embedding generation. In: Proc. of the 16th Int’l Conf. on Web Search and Data Mining. Singapore: ACM, 2023. 661–669. [doi: 10.1145/
                     3539597.3570472]
                 [29]   Zhang Q, Wu B, Sun ZC, Ye YD. Fine-grained modeling of user interests for sequential recommendation. Scientia Sinica Informationis,
                     2022, 52(10): 1775–1791 (in Chinese with English abstract). [doi: 10.1360/SSI-2021-0026]
                 [30]   Yu  JL  Yin  HZ,  Xia  X,  Chen  T,  Cui  LZ,  Nguyen  QVH.  Are  graph  augmentations  necessary?:  Simple  graph  contrastive  learning  for
                     recommendation. In: Proc. of the 45th Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. Madrid: ACM,
                     2022. 1294–1303. [doi: 10.1145/3477495.3531937]
                 [31]   Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. In: Proc. of the
                     31st Int’l Conf. on Neural Information Processing Systems. Long Beach: Curran Associates Inc. , 2017. 6000–6010.
                 [32]   He  XN,  Deng  K,  Wang  X,  Li  Y,  Zhang  YD,  Wang  M.  LightGCN:  Simplifying  and  powering  graph  convolution  network  for
                     recommendation. In: Proc. of the 43rd Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. ACM, 2020.
                     639–648. [doi: 10.1145/3397271.3401063]
                 [33]   Liu Q, Zeng YF, Mokhosi R, Zhang HB. STAMP: Short-term attention/memory priority model for session-based recommendation. In:
                     Proc. of the 24th ACM SIGKDD Int’l Conf. on Knowledge Discovery & Data Mining. London: ACM, 2018. 1831–1839. [doi: 10.1145/
                     3219819.3219950]
                 [34]   Sun F, Liu J, Wu J, Pei CH, Lin X, Ou WW, Jiang P. BERT4Rec: Sequential recommendation with bidirectional encoder representations
                     from Transformer. In: Proc. of the 28th ACM Int’l Conf. on Information and Knowledge Management. Beijing: ACM, 2019. 1441–1450.
                     [doi: 10.1145/3357384.3357895]
                 [35]   Wei SW, Wu ZW, Li X, Wu QT, Zhang ZQ, Zhou J, Gu LH, Gu JJ. Leave no one behind: Online self-supervised self-distillation for
                     sequential recommendation. In: Proc. of the 2024 ACM Web Conf. Singapore: ACM, 2024. 3767–3776. [doi: 10.1145/3589334.3645590]
                 [36]   Chen JY, Zou GX, Zhou P, Wu YR, Chen ZH, Su HC, Wang H, Gong ZG. Sparse enhanced network: An adversarial generation method
                     for robust augmentation in sequential recommendation. In: Proc. of the 38th AAAI Conf. on Artificial Intelligence. Vancouver: AAAI,
   332   333   334   335   336   337   338   339   340   341   342