Page 58 - 《软件学报》2025年第9期
P. 58
韩金池 等: Spike-FlexiCAS: 支持缓存架构灵活配置的 RISC-V 处理器模拟器 3969
of the ACM Asia Conf. on Computer and Communications Security. Melbourne: ACM, 2023. 163–176. [doi: 10.1145/3579856.3595794]
[28] Werner M, Unterluggauer T, Giner L, Schwarz M, Gruss D, Mangar S. ScatterCache: Thwarting cache attacks via cache set
randomization. In: Proc. of the 28th USENIX Security Symp. Santa Clara: USENIX Association, 2019. 675–692.
[29] Intel. coffee_lake. 2017. https://en.wikichip.org/wiki/intel/microarchitectures/coffee_lake
[30] Asanović K, Avizienis R, Bachrach J, Beamer S, Biancolin D, Celio C, Cook H, Dabbelt D, Hauser J, Izraelevitz A, Karandikar S, Keller
B, Kim D, Koenig J. The rocket chip generator. Berkeley: University of California, 2016.
[31] Amid A, Biancolin D, Gonzalez A, Grubb D, Karandikar S, Liew H, Magyar A, Mao H, Ou A, Pemberton N, Rigge P, Schmidt C, Wright
J, Zhao J, Shao YS, Asanovic K, Nikolic B. Chipyard: Integrated design, simulation, and implementation framework for custom SoCs.
IEEE Micro, 2020, 40(4): 10–21. [doi: 10.1109/MM.2020.2996616]
[32] Cook H. Productive design of extensible on-chip memory hierarchies [Ph.D. Thesis]. Berkeley: University of California, 2016.
[33] Jaleel A, Theobald KB, Steely SC Jr, Emer J. High performance cache replacement using re-reference interval prediction (RRIP). In:
Proc. of the 37th Int’l Symp. on Computer Architecture. Saint-Malo: ACM, 2010. 60–71. [doi: 10.1145/1815961.1815971]
[34] Tatar A, Trujillo D, Giuffrida C, Bos H. TLB;DR: Enhancing TLB-based attacks with TLB desynchronized reverse engineering. In: Proc.
of the 31st USENIX Security Symp. Boston: USENIX Association, 2022. 989–1007.
[35] Alglave J, Maranget L, Sarkar S, Sewell P. Litmus: Running tests against hardware. In: Proc. of the 17th Int’l Conf. on Tools and
Algorithms for the Construction and Analysis of Systems. Saarbrücken: Springer, 2011. 41–44. [doi: 10.1007/978-3-642-19835-9_5]
[36] Jagtap R, Diestelhorst S, Hansson A, Jung M, Wehn N. Exploring system performance using elastic traces: Fast, accurate and portable. In:
Proc. of the 2016 Int’l Conf. on Embedded Computer Systems: Architectures, Modeling and Simulation. Agios Konstantinos: IEEE,
2016. 96–105. [doi: 10.1109/SAMOS.2016.7818336]
[37] Sangaiah K, Lui M, Jagtap R, Diestelhorst S, Nilakantan S, More A, Taskin B, Hempstead M. SynchroTrace: Synchronization-aware
architecture-agnostic traces for lightweight multicore simulation of CMP and HPC workloads. ACM Trans. on Architecture and Code
Optimization, 2018, 15(1): 2. [doi: 10.1145/3158642]
附中文参考文献:
[9] 王崇, 魏帅, 张帆, 宋克. 缓存侧信道防御研究综述. 计算机研究与发展, 2021, 58(4): 794–810. [doi: 10.7544/issn1000-1239.2021.
20200500]
韩金池(2000-), 男, 硕士生, 主要研究领域为计 马浩(1994-), 男, 博士生, 主要研究领域为随机
算机体系结构安全. 化缓存侧信道防御.
王智栋(2001-), 男, 硕士生, 主要研究领域为计 宋威(1983-), 男, 副研究员, 博士生导师, CCF
算机体系结构安全. 高级会员, 主要研究领域为安全处理器设计, 计
算机体系结构安全, 编译器的安全优化技术, 基
于 RISC-V 的处理器设计.

