Page 293 - 《软件学报》2025年第9期
P. 293

4204                                                       软件学报  2025  年第  36  卷第  9  期


                  [3]   Ye J, Chen Z, Liu JH, Du B. TextFuseNet: Scene text detection with richer fused features. In: Proc. of the 29th Int’l Joint Conf. on
                     Artificial Intelligence. Yokohama: IJCAI, 2020. 516–522.
                  [4]   Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network. arXiv:1503.02531, 2015.
                  [5]   Gao H, Tian YL, Xu FY, Zhong S. Survey of deep learning model compression and acceleration. Ruan Jian Xue Bao/Journal of Software,
                     2021, 32(1): 68–92 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6096.htm [doi: 10.13328/j.cnki.jos.006096]
                  [6]   Li ZH, Xu PF, Chang XJ, Yang LY, Zhang YY, Yao LN, Chen XJ. When object detection meets knowledge distillation: A survey. IEEE
                     Trans. on Pattern Analysis and Machine Intelligence, 2023, 45(8): 10555–10579. [doi: 10.1109/TPAMI.2023.3257546]
                  [7]   Du YN, Li CX, Guo RY, Cui C, Liu WW, Zhou J, Lu B, Yang YH, Liu QW, Hu XG, Yu DH, Ma YJ. PP-OCRv2: Bag of tricks for ultra
                     lightweight OCR system. arXiv:2109.03144, 2021.
                  [8]   Romero A, Ballas N, Kahou SE, Chassang A, Gatta C, Bengio Y. FitNets: Hints for thin deep nets. arXiv:1412.6550, 2014.
                  [9]   Krizhevsky A. Learning multiple layers of features from tiny images [MS. Thesis]. Toronto: University of Toronto, 2009.
                 [10]   He KM, Zhang XY, Ren SQ, Sun J. Deep residual learning for image recognition. In: Proc. of the 2016 IEEE Conf. on Computer Vision
                     and Pattern Recognition. Las Vegas: IEEE, 2016. 770–778. [doi: 10.1109/CVPR.2016.90]
                 [11]   Karatzas D, Gomez-Bigorda L, Nicolaou A, Ghosh S, Bagdanov A, Iwamura M, Matas J, Neumann L, Chandrasekhar VR, Lu SJ, Shafait
                     F,  Uchida  S,  Valveny  E.  ICDAR  2015  competition  on  robust  reading.  In:  Proc.  of  the  13th  Int’l  Conf.  on  Document  Analysis  and
                     Recognition. Tunis: IEEE, 2015. 1156–1160. [doi: 10.1109/ICDAR.2015.7333942]
                 [12]   Liao MH, Wan ZY, Yao C, Chen K, Bai X. Real-time scene text detection with differentiable binarization. In: Proc. of the 34th AAAI
                     Conf. on Artificial Intelligence. New York: AAAI, 2020. 11474–11481. [doi: 10.1609/aaai.v34i07.6812]
                 [13]   Lyu PY, Liao MH, Yao C, Wu WH, Bai X. Mask TextSpotter: An end-to-end trainable neural network for spotting text with arbitrary
                     shapes. In: Proc. of the 15th European Conf. on Computer Vision. Munich: Springer, 2018. 71–88. [doi: 10.1007/978-3-030-01264-9_5]
                 [14]   He KM, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. In: Proc. of the 2017 IEEE Int’l Conf. on Computer Vision. Venice: IEEE,
                     2017. 2980–2988. [doi: 10.1109/ICCV.2017.322]
                 [15]   Zhou XY, Yao C, Wen H, Wang YZ, Zhou SC, He WR, Liang JJ. EAST: An efficient and accurate scene text detector. In: Proc. of the
                     2017 IEEE Conf. on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 2642–2651. [doi: 10.1109/CVPR.2017.283]
                 [16]   Tian Z, Huang WL, He T, He P, Qiao Y. Detecting text in natural image with connectionist text proposal network. In: Proc. of the 14th
                     European Conf. on Computer Vision. Amsterdam: Springer, 2016. 56–72. [doi: 10.1007/978-3-319-46484-8_4]
                 [17]   Ren SQ, He KM, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. In: Proc. of the
                     28th Int’l Conf. on Neural Information Processing Systems. Montreal: MIT Press, 2015. 91–99.
                 [18]   Liao MH, Shi BG, Bai X, Wang XG, Liu WY. Textboxes: A fast text detector with a single deep neural network. In: Proc. of the 31st
                     AAAI Conf. on Artificial Intelligence. San Francisco: AAAI, 2017. 4161–4167. [doi: 10.1609/aaai.v31i1.11196]
                 [19]   Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC. SSD: Single shot multibox detector. In: Proc. of the 14th European
                     Conf. on Computer Vision. Amsterdam: Springer, 2016. 21–37. [doi: 10.1007/978-3-319-46448-0_2]
                 [20]   Qin XG, Zhou Y, Guo YH, Wu DY, Tian ZH, Jiang N, Wang HB, Wang WP. Mask is all you need: Rethinking mask R-CNN for dense
                     and arbitrary-shaped scene text detection. In: Proc. of the 29th ACM Int’l Conf. on Multimedia. Association for Computing Machinery,
                     2021. 414–423. [doi: 10.1145/3474085.3475178]
                 [21]   Dai P, Zhang S, Zhang H, et al. Progressive contour regression for arbitrary-shape scene text detection. In: Proc. of the 2021 IEEE/CVF
                     Conf. on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021. 7389–7398. [doi: 10.1109/CVPR46437.2021.00731]
                 [22]   Peng SD, Jiang W, Pi HJ, Li XL, Bao HJ, Zhou XW. Deep snake for real-time instance segmentation. In: Proc. of the 2020 IEEE/CVF
                     Conf. on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 8530–8539. [doi: 10.1109/CVPR42600.2020.00856]
                 [23]   Liao MH, Zou ZS, Wan ZY, Yao C, Bai X. Real-time scene text detection with differentiable binarization and adaptive scale fusion. IEEE
                     Trans. on Pattern Analysis and Machine Intelligence, 2023, 45(1): 919–931. [doi: 10.1109/TPAMI.2022.3155612]
                 [24]   He T, Shen CH, Tian Z, Gong D, Sun CM, Yan YL. Knowledge adaptation for efficient semantic segmentation. In: Proc. of the 2019
                     IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 578–587. [doi: 10.1109/CVPR.2019.00067]
                 [25]   Liu YF, Chen K, Liu C, Qin ZC, Luo ZB, Wang JD. Structured knowledge distillation for semantic segmentation. In: Proc. of the 2019
                     IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 2599–2608. [doi: 10.1109/CVPR.2019.00271]
                 [26]   Zhang  LF,  Song  JB,  Gao  AN,  Chen  JW,  Bao  CL,  Ma  KS.  Be  your  own  teacher:  Improve  the  performance  of  convolutional  neural
                     networks via self distillation. In: Proc. of the 2019 IEEE/CVF Int’l Conf. on Computer Vision. Seoul: IEEE, 2019. 3712–3721. [doi: 10.
                     1109/ICCV.2019.00381]
                 [27]   Hou  YN,  Ma  Z,  Liu  CX,  Loy  CC.  Learning  lightweight  lane  detection  CNNs  by  self  attention  distillation.  In:  Proc.  of  the  2019
                     IEEE/CVF Int’l Conf. on Computer Vision. Seoul: IEEE, 2019. 1013–1021. [doi: 10.1109/ICCV.2019.00110]
   288   289   290   291   292   293   294   295   296   297   298