Page 294 - 《软件学报》2025年第9期
P. 294

陈建炜 等: 基于掩码信息熵迁移的场景文本检测知识蒸馏                                                     4205


                 [28]   Zheng ZH, Ye RG, Hou QB, Ren DW, Wang P, Zuo WM, Cheng MM. Localization distillation for object detection. IEEE Trans. on
                     Pattern Analysis and Machine Intelligence, 2023, 45(8): 10070–10083. [doi: 10.1109/TPAMI.2023.3248583]
                 [29]   Zhou  SC,  Liu  WZ,  Hu  C,  Zhou  SC,  Ma  C.  UniDistill:  A  universal  cross-modality  knowledge  distillation  framework  for  3D  object
                     detection in bird’s-eye view. In: Proc. of the 2023 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Vancouver: IEEE,
                     2023. 5116–5125. [doi: 10.1109/CVPR52729.2023.00495]
                 [30]   Zagoruyko  S,  Komodakis  N.  Paying  more  attention  to  attention:  Improving  the  performance  of  convolutional  neural  networks  via
                     attention transfer. arXiv:1612.03928, 2016.
                 [31]   Chen  JW,  Yang  F,  Lai  YX.  A  self-distillation  approach  via  entropy  transfer  for  scene  text  detection.  Acta  Automatica  Sinica,  2023,
                     49(11): 1−12 (in Chinese with English abstract). [doi: 10.16383/j.aas.c210598]
                 [32]   Yang  P,  Zhang  F,  Yang  G.  A  fast  scene  text  detector  using  knowledge  distillation.  IEEE  Access,  2019,  7:  22588–22598.  [doi:
                     10.1109/ACCESS.2019.2895330]
                 [33]   Yang P, Yang G, Gong X, Wu PP, Han Xu, Wu JS. Instance segmentation network with self-distillation for scene text detection. IEEE
                     Access, 2020, 8: 45825–45836.[doi: 10.1109/ACCESS.2020.2978225]
                 [34]   Bolya  D,  Zhou  C,  Xiao  FY,  Lee  YJ.  YOLACT:  Real-time  instance  segmentation.  In:  Proc.  of  the  2019  IEEE/CVF  Int’l  Conf.  on
                     Computer Vision. Seoul: IEEE, 2019. 9156–9165. [doi: 10.1109/ICCV.2019.00925]
                 [35]   Yang  CL,  Xie  LX,  Su  C,  Yuille  AL.  Snapshot  distillation:  Teacher-student  optimization  in  one  generation.  In:  Proc.  of  the  2019
                     IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 2854–2863. [doi: 10.1109/CVPR.2019.00297]
                 [36]   Zhang Y, Xiang T, Hospedales TM, Lu HC. Deep mutual learning. In: Proc. of the 2018 IEEE/CVF Conf. on Computer Vision and
                     Pattern Recognition. Salt Lake City: IEEE, 2018. 4320–4328. [doi: 10.1109/CVPR.2018.00454]
                 [37]   Ahn S, Hu SX, Damianou A, Lawrence ND, Dai ZW. Variational information distillation for knowledge transfer. In: Proc. of the 2019
                     IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 9155–9163. [doi: 10.1109/CVPR.2019.00938]
                 [38]   Chen HT, Wang YH, Xu C, Yang ZH, Liu CJ, Shi BX, Xu CJ, Xu C, Tian Q. Data-free learning of student networks. In: Proc. of the
                     2019 IEEE/CVF Int’l Conf. on Computer Vision. Seoul: IEEE, 2019. 3513–3521. [doi: 10.1109/ICCV.2019.00361]
                 [39]   Kwon K, Na H, Lee H, Kim NS. Adaptive knowledge distillation based on entropy. In: Proc. of the 2020 IEEE Int’l Conf. on Acoustics,
                     Speech and Signal Processing. Barcelona: IEEE, 2020. 7409–7413. [doi: 10.1109/ICASSP40776.2020.9054698]
                 [40]   Vu  TH,  Jain  H,  Bucher  M,  Cord  M,  Pérez  P.  ADVENT:  Adversarial  entropy  minimization  for  domain  adaptation  in  semantic
                     segmentation. In: Proc. of the 2019 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 2512–2521.
                     [doi: 10.1109/CVPR.2019.00262]
                 [41]   Lin TY, Dollár P, Girshick R, He KM, Hariharan B, Belongie S. Feature pyramid networks for object detection. In: Proc. of the 2017
                     IEEE Conf. on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 936–944. [doi: 10.1109/CVPR.2017.106]
                 [42]   Karatzas D, Shafait F, Uchida S, Iwamura M, Bigorda LGI, Mestre SR, Mas J, Mota DF, Almazàn JA, de las Heras LP. ICDAR 2013
                     robust  reading  competition.  In:  Proc.  of  the  12th  Int’l  Conf.  on  Document  Analysis  and  Recognition.  Washington:  IEEE,  2013.
                     1484–1493. [doi: 10.1109/ICDAR.2013.221]
                 [43]   Yao C, Bai X, Liu WY, Ma Y, Tu ZW. Detecting texts of arbitrary orientations in natural images. In: Proc. of the 2012 IEEE Conf. on
                     Computer Vision and Pattern Recognition. Providence: IEEE, 2012. 1083–1090. [doi: 10.1109/CVPR.2012.6247787]
                 [44]   Yao C, Bai X, Liu WY. A unified framework for multioriented text detection and recognition. IEEE Trans. on Image Processing, 2014,
                     23(11): 4737–4749. [doi: 10.1109/TIP.2014.2353813]
                 [45]   Ch’ng CK, Chan CS. Total-Text: A comprehensive dataset for scene text detection and recognition. In: Proc. of the 14th IAPR Int’l Conf.
                     on Document Analysis and Recognition. Kyoto: IEEE, 2017. 935–942. [doi: 10.1109/ICDAR.2017.157]
                 [46]   He WH, Zhang XY, Yin F, Liu CL. Multi-oriented and multi-lingual scene text detection with direct regression. IEEE Trans. on Image
                     Processing, 2018, 27(11): 5406–5419. [doi: 10.1109/TIP.2018.2855399]
                 [47]   Howard A, Sandler M, Chen B, Wang WJ, Chen LC, Tan MX, Chu G, Vasudevan V, Zhu YK, Pang RM, Adam H, Le Q. Searching for
                     MobileNetV3. In: Proc. of the 2019 IEEE/CVF Int’l Conf. on Computer Vision. Seoul: IEEE, 2019. 1314–1324. [doi: 10.1109/ICCV.
                     2019.00140]
                 [48]   Shu CY, Liu YF, Gao JF, Yan Z, Shen CH. Channel-wise knowledge distillation for dense prediction. In: Proc. of the 2021 IEEE/CVF Int’l
                     Conf. on Computer Vision. Montreal: IEEE, 2021. 5291–5300. [doi: 10.1109/ICCV48922.2021.00526]
                 [49]   Wang YK, Zhou W, Jiang T, Bai X, Xu YC. Intra-class feature variation distillation for semantic segmentation. In: Proc. of the 16th
                     European Conf. on Computer Vision. Glasgow: Springer, 2020. 346–362. [doi: 10.1007/978-3-030-58571-6_21]
                 [50]   Cho JH, Hariharan B. On the efficacy of knowledge distillation. In: Proc. of the 2019 IEEE/CVF Int’l Conf. on Computer Vision. Seoul:
                     IEEE, 2019. 4793–4801. [doi: 10.1109/ICCV.2019.00489]
   289   290   291   292   293   294   295   296   297   298   299