Page 196 - 《软件学报》2025年第9期
P. 196

胡思宇 等: 基于层重组扩展卡尔曼滤波的神经网络力场训练                                                    4107


                  [6]   Raty  JY,  Gygi  F,  Galli  G.  Growth  of  carbon  nanotubes  on  metal  nanoparticles:  A  microscopic  mechanism  from  ab  initio  molecular
                     dynamics simulations. Physical Review Letters, 95(9): 096103. [doi: 10.1103/PhysRevLett.95.096103]
                  [7]   Ma T, Wang SH. Phase Transition Dynamics. Cham: Springer, 2019. [doi: 10.1007/978-3-030-29260-7]
                  [8]   Johannes L, Simon S, Hans H. On the history of the Lennard-Jones potential. Annalen der Physik, 2024, (536): 2400115. [doi: 10.1002/
                     andp.202400115]
                  [9]   Foiles SM, Baskes MI, Daw MS. Embedded-atom-method functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Physical
                     Review B, 1986, 33(12): 7983–7991. [doi: 10.1103/physrevb.33.7983]
                 [10]   Senftle TP, Hong S, Islam MM, Kylasa SB, Zheng YX, Shin YK, Junkermeier C, Engel-Herbert R, Janik MJ, Aktulga HM, Verstraelen
                     T,  Grama  A,  van  Duin  ACT.  The  ReaxFF  reactive  force-field:  Development,  applications  and  future  directions.  npj  Computational
                     Materials, 2016, 2(1): 15011. [doi: 10.1038/npjcompumats.2015.11]
                 [11]   Smit B. Phase diagrams of Lennard-Jones fluids. The Journal of Chemical Physics, 1992, 96(11): 8639–8640. [doi: 10.1063/1.462271]
                 [12]   Koura K, Matsumoto H. Variable soft sphere molecular model for inverse-power-law or Lennard-Jones potential. Physics of Fluids A,
                     1991, 3(10): 2459–2465. [doi: 10.1063/1.858184]
                 [13]   Daw MS, Baskes MI. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical
                     Review B, 1984, 29(12): 6443–6453. [doi: 10.1103/physrevb.29.6443]
                 [14]   Jelinek B, Groh S, Horstemeyer MF, Houze J, Kim SG, Wagner GJ, Moitra A, Baskes MI. Modified embedded atom method potential for
                     Al, Si, Mg, Cu, and Fe alloys. Physical Review B, 2012, 85(24): 245102. [doi: 10.1103/physrevb.85.245102]
                 [15]   Chenoweth K, Van Duin ACT, Goddard WA. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation.
                     The Journal of Physical Chemistry A, 2008, 112(5): 1040–1053. [doi: 10.1021/jp709896w]
                 [16]   Guo ZQ, Lu DH, Yan YJ, Hu SY, Liu RR, Tan GM, Sun NH, Jiang WR, Liu LJ, Chen YX, Zhang LF, Chen MH, Wang H, Jia WL.
                     Extending the limit of molecular dynamics with ab initio accuracy to 10 billion atoms. In: Proc. of the 27th ACM SIGPLAN Symp. on
                     Principles  and  Practice  of  Parallel  Programming.  New  York:  Association  for  Computing  Machinery,  2022.  205–218.  [doi:  10.1145/
                     3503221.3508425]
                 [17]   Jia WL, Wang H, Chen MH, Lu DH, Lin L, Car R, Weinan E, Zhang LF. Pushing the limit of molecular dynamics with ab initio accuracy
                     to 100 million atoms with machine learning. In: Proc. of the 2020 Int’l Conf. for High Performance Computing, Networking, Storage and
                     Analysis. Atlanta: IEEE, 2020. 1–14. [doi: 10.1109/SC41405.2020.00009]
                 [18]   Thompson AP, Swiler LP, Trott CR, Foiles SM, Tucker GJ. Spectral neighbor analysis method for automated generation of quantum-
                     accurate interatomic potentials. Journal of Computational Physics, 2015, 285: 316–330. [doi: 10.1016/j.jcp.2014.12.018]
                 [19]   Lee K, Yoo D, Jeong W, Han S. SIMPLE-NN: An efficient package for training and executing neural-network interatomic potentials.
                     Computer Physics Communications, 2019, 242: 95–103. [doi: 10.1016/j.cpc.2019.04.014]
                 [20]   Behler J. Representing potential energy surfaces by high-dimensional neural network potentials. Journal of Physics: Condensed Matter,
                     2014, 26(18): 183001. [doi: 10.1088/0953-8984/26/18/183001]
                 [21]   Behler  J.  First  principles  neural  network  potentials  for  reactive  simulations  of  large  molecular  and  condensed  systems.  Angewandte
                     Chemie International Edition, 2017, 56(42): 12828–12840. [doi: 10.1002/anie.201703114]
                 [22]   Behler  J,  Parrinello  M.  Generalized  neural-network  representation  of  high-dimensional  potential-energy  surfaces.  Physical  Review
                     Letters, 2007, 98(14): 146401. [doi: 10.1103/physrevlett.98.146401]
                 [23]   Yao  K,  Herr  JE,  Brown  SN,  Parkhill  J.  Intrinsic  bond  energies  from  a  bonds-in-molecules  neural  network.  The  Journal  of  Physical
                     Chemistry Letters, 2017, 8(12): 2689–2694. [doi: 10.1021/acs.jpclett.7b01072]
                 [24]   Desai S, Reeve ST, Belak JF. Implementing a neural network interatomic model with performance portability for emerging exascale
                     architectures. Computer Physics Communications, 2022, 270: 108156. [doi: 10.1016/j.cpc.2021.108156]
                 [25]   Huang YP, Xia YJ, Yang LJ, Wei JC, Yang YI, Gao YQ. SPONGE: A GPU-accelerated molecular dynamics package with enhanced
                     sampling and AI-driven algorithms. Chinese Journal of Chemistry, 2022, 40(1): 160–168. [doi: 10.1002/cjoc.202100456]
                 [26]   Wang H, Zhang LF, Han JQ, E WN. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular
                     dynamics. Computer Physics Communications, 2018, 228: 178–184. [doi: 10.1016/j.cpc.2018.03.016]
                 [27]   Schütt KT, Arbabzadah F, Chmiela S, Müller KR, Tkatchenko A. Quantum-chemical insights from deep tensor neural networks. Nature
                     Communications, 2017, 8(1): 13890. [doi: 10.1038/ncomms13890]
                 [28]   Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE. Neural message passing for quantum chemistry. In: Proc. of the 34th Int’l Conf.
                     on Machine Learning. Sydney: JMLR.org, 2017. 1263–1272.
                 [29]   Schütt KR, Unke O, Gastegger M. Equivariant message passing for the prediction of tensorial properties and molecular spectra. In: Proc.
                     of the 38th Int’l Conf. on Machine Learning. PMLR, 2021. 9377–9388.
   191   192   193   194   195   196   197   198   199   200   201