Page 194 - 《软件学报》2025年第9期
P. 194

胡思宇 等: 基于层重组扩展卡尔曼滤波的神经网络力场训练                                                    4105



                                    表 5 多模型在    Adam  和层重组卡尔曼滤波优化器下的收敛误差

                     体系         模型/方法        训练集   RMSE E    训练集  RMSE F    测试集  RMSE E    测试集   RMSE F
                                             (Adam/RLEKF)   (Adam/RLEKF)    (Adam/RLEKF)     (Adam/KF)
                               2B3B-Cosine   0.054 4/0.039 2  0.061 5/0.057 7  0.060 3/0.048 7  0.073 3/0.069 8
                              2B3B-Gaussian  0.079 5/0.048 0  0.070 2/0.061 0  0.084 5/0.058 5  0.081 5/0.069 9
                    Cu1646
                                  MTP        0.072 4/0.049 9  0.073 2/0.070 2  0.072 8/0.064 9  0.089 0/0.089 3
                                 SNAP        0.086 7/0.063 1  0.118/0.092 6  0.125/0.085 6   0.157/0.122
                               2B3B-Cosine  0.004 92/0.003 42  0.013 1/0.010 0  0.008 35/0.008 40  0.016 4/0.019 6
                              2B3B-Gaussian  0.006 14/0.004 72  0.012 5/0.011 4  0.007 74/0.007 63  0.013 8/0.014 2
                    Ag2015
                                  MTP       0.006 33/0.003 44  0.014 4/0.008 49  0.011 9/0.008 33  0.017 8/0.016 5
                                 SNAP       0.008 99/0.004 88  0.020 7/0.012 4  0.013 9/0.012 0  0.025 3/0.021 8
                               2B3B-Cosine   0.040 0/0.029 3  0.061 4/0.055 5  0.040 6/0.038 6  0.061 5/0.061 5
                              2B3B-Gaussian  0.056 6/0.038 1  0.073 5/0.064 5  0.054 2/0.043 2  0.072 1/0.066 2
                    Al4000
                                  MTP        0.038 5/0.024 7  0.058 8/0.048 1  0.034 2/0.031 2  0.058 4/0.054 8
                                 SNAP        0.051 9/0.032 2  0.080 6/0.066 8  0.051 3/0.035 2  0.083 6/0.077 3
                               2B3B-Cosine   0.021 5/0.014 9  0.042 5/0.035 4  0.016 9/0.018 7  0.049 8/0.047 8
                              2B3B-Gaussian  0.026 7/0.012 8  0.070 9/0.034 3  0.025 1/0.022 2  0.075 9/0.043 4
                    C4000
                                  MTP         0.131/0.069 9   0.330/0.200    0.129/0.171     0.354/0.283
                                 SNAP         0.222/0.129     0.562/0.481    0.365/0.233     0.732/0.702
                               2B3B-Cosine    0.152/0.012 4  0.026 3/0.026 1  0.290/0.174   0.027 4/0.028 4
                              2B3B-Gaussian  0.091 7/0.017 0  0.020 0/0.020 1  0.178/0.123  0.019 7/0.020 4
                    Li1000
                                  MTP        0.031 4/0.003 40  0.009 22/0.008 88  0.039 7/0.043 1  0.009 52/0.009 43
                                 SNAP        0.095 8/0.006 67  0.020 2/0.016 1  0.113/0.078 8  0.021 5/0.017 4
                               2B3B-Cosine   0.012 2/0.008 79  0.020 9/0.017 9  0.008 73/0.010 9  0.022 6/0.029 6
                              2B3B-Gaussian  0.015 8/0.009 21  0.023 0/0.019 7  0.014 6/0.013 5  0.023 4/0.023 7
                    Mg4000
                                  MTP       0.007 18/0.002 86  0.014 1/0.010 5  0.006 52/0.006 25  0.015 8/0.015 3
                                 SNAP        0.012 5/0.002 87  0.018 3/0.011 4  0.012 0/0.007 85  0.021 3/0.015 9
                               2B3B-Cosine    0.198/0.020 5  0.080 9/0.073 1  0.297/0.249    0.135/0.145
                              2B3B-Gaussian   0.249/0.052 1  0.106/0.087 5   0.462/0.217     0.150/0.139
                    S2000
                                  MTP         0.202/0.022 5  0.147/0.089 3   0.438/0.322     0.213/0.195
                                 SNAP         0.499/0.056 9   0.266/0.198    0.661/0.511     0.351/0.328
                               2B3B-Cosine   0.047 9/0.038 4  0.051 9/0.047 3  0.037 7/0.032 0  0.053 5/0.051 8
                              2B3B-Gaussian  0.067 9/0.041 7  0.059 1/0.045 2  0.051 1/0.046 9  0.060 8/0.047 8
                    Si3000
                                  MTP        0.044 8/0.017 8  0.062 2/0.034 5  0.031 7/0.023 4  0.063 9/0.038 9
                                 SNAP        0.052 9/0.025 9  0.075 3/0.045 5  0.042 2/0.023 9  0.079 3/0.049 2
                               2B3B-Cosine   0.023 6/0.009 00  0.048 8/0.039 4  0.033 2/0.244  0.086 4/1.10
                              2B3B-Gaussian   0.041 6/0.267   0.071 1/3.03   0.030 8/0.024  0.081 5/0.067 6
                   H 2 O4000
                                  MTP        0.030 7/0.010 1  0.049 6/0.134  0.099 6/0.035 5  0.129/0.314
                                 SNAP         0.204/0.226     0.575/0.748    0.313/0.339     0.690/0.791
                               2B3B-Cosine    0.110/0.056 6   0.178/0.174    0.112/0.192     0.188/0.204
                   Cu+C2000       MTP         0.793/0.098 1   0.190/0.190    0.724/0.305     0.209/0.725
                                 SNAP         0.631/0.167     0.469/0.507    0.467/0.350     0.495/0.546
                               2B3B-Cosine  0.006 79/0.003 20  0.008 87/0.007 38  0.613/1.38  4.15/2.73
                              2B3B-Gaussian  0.006 90/0.003 38  0.007 85/0.006 59  0.008 28/0.003 82  0.008 54/0.007 34
                   NaCl3193
                                  MTP       0.004 85/0.001 71  0.007 38/0.005 71  0.004 74/0.004 03  0.008 58/0.006 71
                                 SNAP        0.013 2/0.005 91  0.017 6/0.012 3  0.015 0/0.010 8  0.018 6/0.014 8

                 3.2   收敛速度
                    我们考虑    8  个单元素体系的数据集的收敛速度, 鉴于表            5  中单元素体系在一阶      Adam  优化器和二阶层重组卡
                 尔曼滤波优化器的收敛精度相当, 因此比较              8  个单元素体系收敛到表       5  所示的精度时的收敛速度. 图        6(a)–(d) 分
                 别表示在    8  个单元素的体系, 4   种不同模型下, Adam     优化器训练     1 000  个  epoch, 层重组卡尔曼滤波优化器训练
   189   190   191   192   193   194   195   196   197   198   199