Page 330 - 《软件学报》2025年第7期
P. 330

黄靖 等: 基于特征融合动态图网络的多标签文本分类算法                                                     3251


                 [38]  Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. Attention is all you need. In: Proc. of the
                     31st Int’l Conf. on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 6000–6010.
                 [39]  He  XN,  Deng  K,  Wang  X,  Li  Y,  Zhang  YD,  Wang  M.  LightGCN:  Simplifying  and  powering  graph  convolution  network  for
                     recommendation. In: Proc. of the 43rd Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. ACM, 2020.
                     639–648. [doi: 10.1145/3397271.34010]
                 [40]  Ma QW, Yuan CY, Zhou W, Hu SL. Label-specific dual graph neural network for multi-label text classification. In: Proc. of the 59th
                     Annual Meeting of the Association for Computational Linguistics and the 11th Int’l Joint Conf. on Natural Language Processing. ACL,
                     2021. 3855–3864. [doi: 10.18653/v1/2021.acl-long.298]
                 [41]  Ye J, He JJ, Peng XJ, Wu WH, Qiao Y. Attention-driven dynamic graph convolutional network for multi-label image recognition. In:
                     Proc. of the 16th European Conf. on Computer Vision. Glasgow: Springer, 2020. 649–665. [doi: 10.1007/978-3-030-58589-1_39]
                 [42]  Katakis I, Tsoumakas G, Vlahavas I. Multilabel text classification for automated tag suggestion. In: Proc. of the 2008 ECML/PKDD
                     Discovery Challenge. Antwerp: ECML, 2008. 1–9.
                 [43]  Lewis DD, Yang YM, Rose T G, Li F. RCV1: A new benchmark collection for text categorization research. The Journal of Machine
                     Learning Research, 2004, 5: 361–397.
                 [44]  Yang PC, Sun X, Li W, Ma SM, Wu W, Wang HF. SGM: Sequence generation model for multi-label classification. In: Proc. of the 27th
                     Int’l Conf. on Computational Linguistics. Santa Fe: ACL, 2018. 3915–3926.
                 [45]  Zhang  ML,  Zhou  ZH.  A  review  on  multi-label  learning  algorithms.  IEEE  Trans.  on  Knowledge  and  Data  Engineering,  2014,  26(8):
                     1819–1837. [doi: 10.1109/TKDE.2013.39]
                 [46]  Yang PC, Luo FL, Ma SM, Lin JY, Sun X. A deep reinforced sequence-to-set model for multi-label classification. In: Proc. of the 57th
                     Annual Meeting of the Association for Computational Linguistics. Florence: ACL, 2019. 5252–5258. [doi: 10.18653/v1/P19-1518]
                 [47]  Boutell MR, Luo JB, Shen XP, Brown CM. Learning multi-label scene classification. Pattern Recognition, 2004, 37(9): 1757–1771. [doi:
                     10.1016/j.patcog.2004.03.009]
                 [48]  Chen GB, Ye DH, Xing ZC, Chen JS, Cambria E. Ensemble application of convolutional and recurrent neural networks for multi-label
                     text categorization. In: Proc. of the 2017 Int’l Joint Conf. on Neural Networks (IJCNN). Anchorage: IEEE, 2017. 2377–2383. [doi: 10.
                     1109/IJCNN.2017.7966144]
                 [49]  Wang R, Ridley R, Su XA, Qu WG, Dai XY. A novel reasoning mechanism for multi-label text classification. Information Processing &
                     Management, 2021, 58(2): 102441. [doi: 10.1016/j.ipm.2020.102441]
                 [50]  Zhang XM, Zhang QW, Yan Z, Liu RF, Cao YB. Enhancing label correlation feedback in multi-label text classification via multi-task
                     learning. In: Proc. of the 2021 Findings of the Association for Computational Linguistics (ACL-IJCNLP 2021). ACL, 2021. 1190–1200.
                     [doi: 10.18653/v1/2021.findings-acl.101]
                 [51]  Yan  YY,  Liu  F,  Zhuang  XQ,  Ju  J.  An  R-Transformer_BiLSTM  model  based  on  attention  for  multi-label  text  classification.  Neural
                     Processing Letters, 2023, 55(2): 1293–1316. [doi: 10.1007/s11063-022-10938-y]
                 [52]  Kingma DP, Ba J. Adam: A method for stochastic optimization. In: Proc. of the 3rd Int’l Conf. on Learning Representations. San Diego,
                     2015. 6.


                 附中文参考文献:
                 [13]  杜晓宇, 陈正, 项欣光. 基于解耦图神经网络的可解释标签感知推荐算法. 软件学报, 2023, 34(12): 5670–5685. http://www.jos.org.cn/
                     1000-9825/6754.htm [doi: 10.13328/j.cnki.jos.006754]
                 [19]  李芳芳, 苏朴真, 段俊文, 张师超, 毛星亮. 多粒度信息关系增强的多标签文本分类. 软件学报, 2023, 34(12): 5686–5703. http://www.
                     jos.org.cn/1000-9825/6802.htm [doi: 10.13328/j.cnki.jos.006802]
                 [26]  肖琳, 陈博理, 黄鑫, 刘华锋, 景丽萍, 于剑. 基于标签语义注意力的多标签文本分类. 软件学报, 2020, 31(4): 1079–1089. http://www.
                     jos.org.cn/1000-9825/5923.htm [doi: 10.13328/j.cnki.jos.005923]
                 [31]  李博涵, 向宇轩, 封顶, 何志超, 吴佳骏, 戴天伦, 李静. 融合知识感知与双重注意力的短文本分类模型. 软件学报, 2022, 33(10):
                     3565–3581. http://www.jos.org.cn/1000-9825/6630.htm [doi: 10.13328/j.cnki.jos.006630]
   325   326   327   328   329   330   331   332   333   334   335